Soliton dynamics in gas-filled hollow-core photonic crystal fibers

Gas-filled hollow-core photonic crystal fibers offer unprecedented opportunities to observe novel nonlinear phenomena. The various properties of gases that can be used to fill these fibers give additional degrees of freedom for investigating nonlinear pulse propagation in a wide range of different media. In this review, we will consider some of the the new nonlinear interactions that have been discovered in recent years, in particular those which are based on soliton dynamics.

[1]  Nonlinear pulse distortion at the zero dispersion wavelength of an optical fibre , 1993 .

[2]  Fabio Biancalana,et al.  Plasma-induced asymmetric self-phase modulation and modulational instability in gas-filled hollow-core photonic crystal fibers. , 2012, Physical review letters.

[3]  P. Roberts,et al.  Ultimate low loss of hollow-core photonic crystal fibres. , 2005, Optics express.

[4]  W. Chang,et al.  Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber. , 2013, Optics letters.

[5]  F. Bloch Über die Quantenmechanik der Elektronen in Kristallgittern , 1929 .

[6]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[7]  Hasegawa,et al.  Observation of modulational instability in optical fibers. , 1986, Physical review letters.

[8]  James P. Gordon,et al.  Femtosecond distributed soliton spectrum in fibers , 1989 .

[9]  Brian Joseph Mangan,et al.  Experimental study of dual-core photonic crystal fibre , 2000 .

[10]  Alexander E. Kaplan,et al.  Resonant Nonlinear Interactions of Light with Matter , 1989 .

[11]  T A Birks,et al.  Highly birefringent photonic crystal fibers. , 2000, Optics letters.

[12]  See Leang Chin,et al.  Laser ionization of noble gases by Coulomb-barrier suppression , 1991 .

[13]  Andrew G. Glen,et al.  APPL , 2001 .

[14]  T. Chikyow,et al.  Philosophical Magazine Letters Growth and Structural Properties of Bi(fe X Sc 1-x )o 3 Thin Films , 2022 .

[15]  P St J Russell,et al.  Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber. , 2011, Physical review letters.

[16]  P. Russell,et al.  Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited] , 2011 .

[17]  W. Wadsworth,et al.  Low loss silica hollow core fibers for 3-4 μm spectral region. , 2012, Optics express.

[18]  P. Russell Photonic Crystal Fibers , 2003, Science.

[19]  T. Imasaka,et al.  A new approach for the generation of ultrashort optical pulses , 1993 .

[20]  Richard W. Ziolkowski,et al.  Full-wave vector Maxwell equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear Kerr medium exhibiting a finite response time , 1993 .

[21]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[22]  P. Bélanger,et al.  Soliton self-frequency shift versus Galilean-like symmetry. , 1990, Optics letters.

[23]  Luban,et al.  Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices. , 1995, Physical review. B, Condensed matter.

[24]  P A Roos,et al.  Widely tunable continuous-wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser. , 2000, Optics letters.

[25]  T. Imasaka,et al.  Generation of high-order rotational lines in hydrogen by four-wave Raman mixing in the femtosecond regime , 1998 .

[26]  M F Saleh,et al.  Femtosecond nonlinear fiber optics in the ionization regime. , 2011, Physical review letters.

[27]  P. Yeh,et al.  Bragg reflection waveguides , 1976 .

[28]  T A Birks,et al.  Group-velocity dispersion in photonic crystal fibers. , 1998, Optics letters.

[29]  M. Wegener,et al.  Broad bandwidths from frequency-shifting solitons in fibers. , 1989, Optics letters.

[30]  L. Mollenauer,et al.  Discovery of the soliton self-frequency shift. , 1986, Optics letters.

[31]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[32]  A. Stentz,et al.  Optical properties of high-delta air silica microstructure optical fibers. , 2000, Optics letters.

[33]  T. Elsaesser,et al.  GENERATION OF MULTIPLE PHASE-LOCKED STOKES AND ANTI-STOKES COMPONENTS IN AN IMPULSIVELY EXCITED RAMAN MEDIUM , 1999 .

[34]  Federico Belli,et al.  Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber , 2015 .

[35]  William J. Wadsworth,et al.  Supercontinuum generation in tapered fibers. , 2000, Optics letters.

[36]  M. Murnane,et al.  Impulsive stimulated Raman scattering of molecular vibrations using nonlinear pulse shaping , 2003, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[37]  H. H. Chen,et al.  Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers. , 1986, Optics letters.

[38]  Jonathan Knight,et al.  Large mode area photonic crystal fibre , 1998 .

[39]  Shock-induced PT-symmetric potentials in gas-filled photonic-crystal fibers , 2013, 1310.7497.

[40]  F. Benabid,et al.  Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber , 2002, Science.

[41]  Luk,et al.  Tunneling ionization in the multiphoton regime. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[42]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[43]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[44]  Allen Taflove,et al.  Computational modeling of femtosecond optical solitons from Maxwell's equations , 1992 .

[45]  Fujio Shimizu,et al.  Frequency Broadening in Liquids by a Short Light Pulse , 1967 .

[46]  P. Weinberger,et al.  John Kerr and his effects found in 1877 and 1878 , 2008 .

[47]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[48]  M Ibanescu,et al.  Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. , 2001, Optics express.

[49]  Y. Koyamada,et al.  Comparison between finite-difference time-domain calculation with all parameters of Sellmeier's fitting equation and experimental results for slightly chirped 12-fs laser pulse propagation in a silica fiber , 2005, Journal of Lightwave Technology.

[50]  Dirk Müller,et al.  Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers , 2003, Science.

[51]  B Hafizi,et al.  Propagation of intense short laser pulses in the atmosphere. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  J. M. Decaudin Fiber and Integrated Optics in France , 1979 .

[53]  Zach DeVito,et al.  Opt , 2017 .

[54]  F. Benabid,et al.  High harmonic generation in a gas-filled hollow-core photonic crystal fiber , 2009 .

[55]  Marvin J. Weber,et al.  CRC HANDBOOK of LASER SCIENCE and TECHNOLOGY , 1999 .

[56]  A. Hasegawa,et al.  Nonlinear pulse propagation in a monomode dielectric guide , 1987 .

[57]  Dyer,et al.  Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2. , 1986, Physical review. A, General physics.

[58]  Philipp Hölzer,et al.  Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers. , 2011, Physical review letters.

[59]  J. Taylor,et al.  Spectral and temporal study of the evolution from modulational instability to solitary wave , 1989 .

[60]  Heinz P. Weber,et al.  Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber , 1987 .

[61]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[62]  Fabio Biancalana,et al.  Tunable frequency-up/down conversion in gas-filled hollow-core photonic crystal fibers. , 2015, Optics letters.

[63]  J. Arriaga,et al.  Anomalous dispersion in photonic crystal fiber , 2000, IEEE Photonics Technology Letters.

[64]  E. M. Dianov,et al.  Nonlinear dynamics of femtosecond pulse propagation through single mode optical fiber , 1989 .

[65]  P. Russell,et al.  Influence of ionization on ultrafast gas-based nonlinear fiber optics. , 2011, Optics express.

[66]  D. Richardson,et al.  Nonlinearity in holey optical fibers: measurement and future opportunities. , 1999, Optics letters.

[67]  Herrmann,et al.  Phase relations, quasicontinuous spectra and subfemtosecond pulses in high-order stimulated raman scattering with short-pulse excitation , 2000, Physical review letters.

[68]  Gregory H. Wannier,et al.  Wave Functions and Effective Hamiltonian for Bloch Electrons in an Electric Field , 1960 .

[69]  Kaplan Subfemtosecond pulses in mode-locked 2 pi solitons of the cascade stimulated Raman scattering. , 1994, Physical review letters.

[70]  著者なし 16 , 1871, Animals at the End of the World.

[71]  H. Reiss Relativistic strong-field photoionization , 1990 .

[72]  C. Zener A theory of the electrical breakdown of solid dielectrics , 1934 .

[73]  Akira Hasegawa,et al.  Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability , 1986 .

[74]  J. Gordon,et al.  Theory of the soliton self-frequency shift. , 1986, Optics letters.

[75]  Truong X. Tran,et al.  Raman-induced temporal condensed matter physics in gas-filled photonic crystal fibers. , 2014, Optics express.

[76]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[77]  P Rabinowitz,et al.  Waveguide H(2) Raman laser. , 1976, Applied optics.

[78]  A. Hasegawa,et al.  Tunable coherent IR and FIR sources utilizing modulational instability , 1980 .

[79]  Amir Abdolvand,et al.  Hollow-core photonic crystal fibres for gas-based nonlinear optics , 2014, Nature Photonics.

[80]  A Taflove,et al.  Direct time integration of Maxwell's equations in two-dimensional dielectric waveguides for propagation and scattering of femtosecond electromagnetic solitons. , 1993, Optics letters.

[81]  Chinlon Lin,et al.  New nanosecond continuum for excited-state spectroscopy , 1976 .

[82]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[83]  G. L. Yudin,et al.  Nonadiabatic tunnel ionization: Looking inside a laser cycle , 2001 .

[84]  O. Shapira,et al.  Towards multimaterial multifunctional fibres that see, hear, sense and communicate. , 2007, Nature materials.

[85]  Paul Kinsler Optical pulse propagation with minimal approximations , 2010 .

[86]  J. Taylor,et al.  Solitons in the region of the minimum group-velocity dispersion of single-mode optical fibers. , 1988, Optics letters.

[87]  Numerical simulations of light bullets using the full-vector time-dependent nonlinear Maxwell equations , 1997 .

[88]  T. Koch,et al.  Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures , 1986 .

[89]  Mohammed F. Saleh,et al.  Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers , 2011, 1110.4295.

[90]  Shelton,et al.  Nonlinear susceptibility of H2 and D2 accurately measured over a wide range of wavelengths. , 1985, Physical review. A, General physics.

[91]  P. Roberts,et al.  Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. , 2011, Optics letters.

[92]  J V Moloney,et al.  Nonlinear optical pulse propagation simulation: from Maxwell's to unidirectional equations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[93]  A. Marini,et al.  Strong Raman-induced noninstantaneous soliton interactions in gas-filled photonic crystal fibers. , 2015, Optics letters.