Delay and noise estimation of CMOS logic gates driving coupled resistive-capacitive interconnections

Abstract The effect of interconnect coupling capacitance on the transient characteristics of a CMOS logic gate strongly depends upon the signal activity. A transient analysis of CMOS logic gates driving two and three coupled resistive–capacitive interconnect lines is presented in this paper for different signal combinations. Analytical expressions characterizing the output voltage and the propagation delay of a CMOS logic gate are presented for a variety of signal activity conditions. The uncertainty of the effective load capacitance on the propagation delay due to the signal activity is also addressed. It is demonstrated that the effective load capacitance of a CMOS logic gate depends upon the intrinsic load capacitance, the coupling capacitance, the signal activity, and the size of the CMOS logic gates within a capacitively coupled system. Some design strategies are also suggested to reduce the peak noise voltage and the propagation delay caused by the interconnect coupling capacitance.

[1]  J. Briaire,et al.  Substrate injection and crosstalk in CMOS circuits , 1999, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No.99CH36327).

[2]  Xiaole Xu,et al.  An approach to the analysis and detection of crosstalk faults in digital VLSI circuits , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Andrew B. Kahng,et al.  Noise and delay uncertainty studies for coupled RC interconnects , 1999, Twelfth Annual IEEE International ASIC/SOC Conference (Cat. No.99TH8454).

[4]  William J. Bowhill,et al.  Circuit Implementation of a 300-MHz 64-bit Second-generation CMOS Alpha CPU , 1995, Digit. Tech. J..

[5]  Denis B. Jarvis The Effects of Interconnections on High-Speed Logic Circuits , 1963, IEEE Trans. Electron. Comput..

[6]  K. Ken Lee On-chip interconnects -gigahertz and beyond , 1998 .

[7]  Kjell O. Jeppson,et al.  CMOS Circuit Speed and Buffer Optimization , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[8]  A. R. Newton,et al.  Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas , 1990 .

[9]  Eby G. Friedman,et al.  Interconnect coupling noise in CMOS VLSI circuits , 1999, ISPD '99.

[10]  Eby G. Friedman,et al.  Noise estimation due to signal activity for capacitively coupled CMOS logic gates , 2000, ACM Great Lakes Symposium on VLSI.

[11]  Jürgen Koehl,et al.  Analysis, reduction and avoidance of crosstalk on VLSI chips , 1998, ISPD '98.

[12]  Takayasu Sakurai,et al.  A simple MOSFET model for circuit analysis , 1991 .

[13]  T. Sakurai,et al.  Simple formulas for two- and three-dimensional capacitances , 1983, IEEE Transactions on Electron Devices.

[14]  K. L. Shepard,et al.  Global harmony: coupled noise analysis for full-chip RC interconnect networks , 1997, ICCAD 1997.

[15]  L. Gal,et al.  On-chip cross talk-the new signal integrity challenge , 1995, Proceedings of the IEEE 1995 Custom Integrated Circuits Conference.

[16]  Masakazu Shoji,et al.  Theory of CMOS Digital Circuits and Circuit Failures , 1992 .

[17]  Eby G. Friedman Latching characteristics of a CMOS bistable register , 1993 .

[18]  Dhanistha Panyasak,et al.  Circuits , 1995, Annals of the New York Academy of Sciences.

[19]  Hiroshi Kawaguchi,et al.  Delay and noise formulas for capacitively coupled distributed RC lines , 1998, Proceedings of 1998 Asia and South Pacific Design Automation Conference.

[20]  P. Yang,et al.  Multilevel metal capacitance models for CAD design synthesis systems , 1992, IEEE Electron Device Letters.

[21]  Marc Belleville,et al.  Inductance and capacitance analytic formulas for VLSI interconnects , 1996 .

[22]  Takayasu Sakurai,et al.  Closed-form expressions for interconnection delay, coupling, and crosstalk in VLSIs , 1993 .

[23]  N.H. Kim,et al.  Interconnect capacitance, crosstalk, and signal delay for 0.35 /spl mu/m CMOS technology , 1996, International Electron Devices Meeting. Technical Digest.

[24]  Mankoo Lee A fringing and coupling interconnect line capacitance model for VLSI on-chip wiring delay and crosstalk , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[25]  H. B. Bakoglu,et al.  Circuits, interconnections, and packaging for VLSI , 1990 .

[26]  Anirudh Devgan Efficient coupled noise estimation for on-chip interconnects , 1997, ICCAD 1997.

[27]  Margaret Gilligan,et al.  A methodology for estimating interconnect capacitance for signal propagation delay in VLSls , 1995 .

[28]  Malgorzata Marek-Sadowska,et al.  Modeling Crosstalk in Resistive VLSI Interconnections , 1999, VLSI Design.

[29]  Lawrence T. Pileggi,et al.  Calculating worst-case gate delays due to dominant capacitance coupling , 1997, DAC.

[30]  Ivor Catt,et al.  Crosstalk (Noise) in Digital Systems , 1967, IEEE Trans. Electron. Comput..

[31]  James D. Meindl,et al.  A physical alpha-power law MOSFET model , 1999 .

[32]  Shyh-Chyi Wong,et al.  Interconnection capacitance models for VLSI circuits , 1998 .

[33]  Erich Barke,et al.  Line-to-ground capacitance calculation for VLSI: a comparison , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..