Evaluation between Virtual Acoustic Model and Real Acoustic Scenarios for Urban Representation

Audio representation is critical for immersive virtual environments. This article presents a quasi-experiment based on architecture students evaluating the immersive impact of 3D audio in the representation of urban environments. In the framework of acoustic urban heritage preservation, a set of city squares with varying acoustic features were used as case studies in a two-step process: an objective analysis of the acoustic properties of these spaces; and the users’ subjective perceptions of the virtual environment of the squares. The study shows that we can gain a better understanding of the objective parameters through the subjective views of users. Acoustic heritage can be assessed subjectively using an immersive system such as virtual reality, in which audio representation is a key factor.

[1]  Jakob Nielsen,et al.  Chapter 4 – The Usability Engineering Lifecycle , 1993 .

[2]  Eman M. G. Younis,et al.  NeuroPlace: Categorizing urban places according to mental states , 2017, PloS one.

[3]  Lanbo Liu,et al.  The effect of buildings on acoustic pulse propagation in an urban environment. , 2010, The Journal of the Acoustical Society of America.

[4]  S. Darula,et al.  Daylight Science and Daylighting Technology , 2011 .

[5]  Jakob Nielsen,et al.  Usability engineering , 1997, The Computer Science and Engineering Handbook.

[6]  Alan C. Evans,et al.  Neural mechanisms underlying melodic perception and memory for pitch , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  Joar Skrede,et al.  Cultural Heritage and Ecosystem Services: A Literature Review , 2017 .

[8]  B. Grothe,et al.  Mechanisms of sound localization in mammals. , 2010, Physiological reviews.

[9]  Constantine Stephanidis,et al.  Universal access in the information society , 1999, HCI.

[10]  Peter Shirley,et al.  An Anisotropic Phong BRDF Model , 2000, J. Graphics, GPU, & Game Tools.

[11]  Ning Xiang,et al.  A modified diffusion equation for room-acoustic predication. , 2007, The Journal of the Acoustical Society of America.

[12]  Marc Hassenzahl,et al.  User experience - a research agenda , 2006, Behav. Inf. Technol..

[13]  L. Beranek Concert Halls And Opera Houses , 2003 .

[14]  S. Nascimento,et al.  The number of discernible colors in natural scenes. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  D. Botteldooren,et al.  Parameter study of sound propagation between city canyons with a coupled FDTD-PE model , 2006 .

[16]  O. Richoux,et al.  Effect of the open roof on low frequency acoustic propagation in street canyons , 2009, 0907.0605.

[17]  S. Félix,et al.  On the use of leaky modes in open waveguides for the sound propagation modeling in street canyons. , 2009, The Journal of the Acoustical Society of America.

[18]  David Fonseca,et al.  Identification of Significant Variables for the Parameterization of Structures Learning in Architecture Students , 2018, WorldCIST.

[19]  Ute Hoffmann,et al.  The Eyes of the Skin , 2024 .

[20]  David Fonseca,et al.  Student motivation assessment using and learning virtual and gamified urban environments , 2017, TEEM.

[21]  J. Picaut,et al.  Sound propagation in urban areas: a periodic disposition of buildings. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  J. Michalsky,et al.  All-weather model for sky luminance distribution—Preliminary configuration and validation , 1993 .

[23]  Jorge Martín Gutiérrez Estudio y evaluación de contenidos didácticos en el desarrollo de las habilidades espaciales en el ámbito de la ingeniería , 2011 .

[24]  Christopher J. Plack,et al.  The Sense of Hearing , 2005 .

[25]  D. B. Judd,et al.  Final Report of the O.S.A. Subcommittee on the Spacing of the Munsell Colors , 1943 .

[26]  Lanbo Liu,et al.  Time reversal processing for source location in an urban environmenta) , 2005 .

[27]  David Fonseca,et al.  Bipolar Laddering Assessments Applied to Urban Acoustics Education , 2018, WorldCIST.

[28]  Antonio Carrión Isbert,et al.  Diseño acústico de espacios arquitectónicos , 1998 .

[29]  Francisco J. García-Peñalvo,et al.  The Implementation, Deployment and Evaluation of a Mobile Personal Learning Environment , 2013, J. Univers. Comput. Sci..

[30]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[31]  Nigel Bevan,et al.  Practical issues in usability measurement , 2006, INTR.

[32]  Samantha Windflower Assessment and management of environmental noise , 2014 .

[33]  Mcj Maarten Hornikx Acoustic modelling for indoor and outdoor spaces , 2015 .

[34]  David Fonseca,et al.  Acoustic Filter - New Virtual Reality Audio Format Pretends to Enhance Immersive Experience , 2017, HCI.

[35]  S. Félix,et al.  Sound propagation in periodic urban areas , 2012 .

[36]  David Fonseca,et al.  Mixed-methods research: a new approach to evaluating the motivation and satisfaction of university students using advanced visual technologies , 2014, Universal Access in the Information Society.

[37]  Paul M. Hofman,et al.  Relearning sound localization with new ears , 1998, Nature Neuroscience.

[38]  Ernesto Redondo Domínguez,et al.  Un acercamiento a los paisajes sonoros de la Ciutat Vella de Barcelona , 2017 .

[39]  Kang,et al.  Sound propagation in street canyons: comparison between diffusely and geometrically reflecting boundaries , 2000, The Journal of the Acoustical Society of America.

[40]  Franklin C. Crow,et al.  Shadow algorithms for computer graphics , 1977, SIGGRAPH.

[41]  Fergus R. Fricke,et al.  Sound propagation at a street intersection in an urban environment , 1977 .

[42]  J. B. Brooke,et al.  SUS: A 'Quick and Dirty' Usability Scale , 1996 .

[43]  J. Forssén,et al.  The 2.5-dimensional equivalent sources method for directly exposed and shielded urban canyons. , 2007, The Journal of the Acoustical Society of America.

[44]  Dietrich Heimann,et al.  Three-Dimensional Linearised Euler Model Simulations of Sound Propagation in Idealised Urban Situations with Wind Effects , 2007 .

[45]  Donald P. Greenberg,et al.  A Comprehensive Light-Source Description for Computer Graphics , 1984, IEEE Computer Graphics and Applications.

[46]  Michael Barron,et al.  Auditorium Acoustics and Architectural Design , 1993 .

[47]  Richard L. McKinley,et al.  Spatial Audio Displays for Speech Communications: A Comparison of Free Field and Virtual Acoustic Environments , 1999 .

[48]  Ernesto Redondo Domínguez,et al.  Combinación de técnicas cuantitativas y cualitivas en el análisis de la implantación de nuevas tecnologías en el ámbito docente. Uso de la Realidad Aumentada en la visualización del proyecto arquitectónico , 2013 .

[49]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[50]  J. Picaut Numerical modeling of urban sound fields by a diffusion process , 2002 .

[51]  G. G. Attridge,et al.  The number of discernible colours , 1998 .

[52]  Arnaud Can,et al.  Traffic noise spectrum analysis: dynamic modeling vs. experimental observations , 2010 .