Network topology and the evolution of dynamics in an artificial genetic regulatory network model created by whole genome duplication and divergence.

[1]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[2]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[3]  D. Sankoff,et al.  Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. , 1997, Genetics.

[4]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[5]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[6]  S. Wuchty Scale-free behavior in protein domain networks. , 2001, Molecular biology and evolution.

[7]  A. Hughes,et al.  Gene duplication and the structure of eukaryotic genomes. , 2001, Genome research.

[8]  Hiroaki Kitano,et al.  Foundations of systems biology , 2001 .

[9]  James M. Bower,et al.  Computational modeling of genetic and biochemical networks , 2001 .

[10]  D. Watts,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2001 .

[11]  R. Jackson Genomic regulatory systems , 2001 .

[12]  T. Ohta Near-neutrality in evolution of genes and gene regulation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  P. Bourgine,et al.  Topological and causal structure of the yeast transcriptional regulatory network , 2002, Nature Genetics.

[14]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[15]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[16]  R. Weiss,et al.  Directed evolution of a genetic circuit , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Jie Wu,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2003 .

[18]  Hawoong Jeong,et al.  Classification of scale-free networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Wolfgang Banzhaf,et al.  Network motifs in natural and artificial transcriptional regulatory networks , 2002, Journal of Biological Physics and Chemistry.

[20]  R. Ferrer i Cancho,et al.  Scale-free networks from optimal design , 2002, cond-mat/0204344.

[21]  L. Hood,et al.  The digital code of DNA , 2003, Nature.

[22]  Terence Soule,et al.  Genetic Programming: Theory and Practice , 2003 .

[23]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Z N Oltvai,et al.  Evolutionary conservation of motif constituents in the yeast protein interaction network , 2003, Nature Genetics.

[25]  Wolfgang Banzhaf,et al.  Advances in Artificial Life , 2003, Lecture Notes in Computer Science.

[26]  W. Banzhaf Artificial Regulatory Networks and Genetic Programming , 2003 .

[27]  矢野 貴人,et al.  Directed Evolution のさまざまな応用例 , 2003 .

[28]  Wolfgang Banzhaf On the Dynamics of an Artificial Regulatory Network , 2003, ECAL.

[29]  Jianzhi Zhang Evolution by gene duplication: an update , 2003 .

[30]  R. Solé,et al.  Evolving protein interaction networks through gene duplication. , 2003, Journal of theoretical biology.

[31]  S. Teichmann,et al.  Evolution of transcription factors and the gene regulatory network in Escherichia coli. , 2003, Nucleic acids research.

[32]  M. Gerstein,et al.  Structure and evolution of transcriptional regulatory networks. , 2004, Current opinion in structural biology.

[33]  R. Milo,et al.  Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Wolfgang Banzhaf,et al.  Evolving Dynamics in an Artificial Regulatory Network Model , 2004, PPSN.

[35]  V. Hakim,et al.  Design of genetic networks with specified functions by evolution in silico. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[37]  B. Dujon,et al.  Genome evolution in yeasts , 2004, Nature.

[38]  R. Milo,et al.  Topological generalizations of network motifs. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  B. Snel,et al.  The yeast coexpression network has a small‐world, scale‐free architecture and can be explained by a simple model , 2004, EMBO reports.

[40]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[41]  A Vázquez,et al.  The topological relationship between the large-scale attributes and local interaction patterns of complex networks , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  L. Glass,et al.  Evolving complex dynamics in electronic models of genetic networks. , 2004, Chaos.

[43]  S. Teichmann,et al.  Gene regulatory network growth by duplication , 2004, Nature Genetics.

[44]  B. Birren,et al.  Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae , 2004, Nature.

[45]  A. Hughes,et al.  Gene duplication and the origin of novel proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Wolfgang Banzhaf,et al.  Analysis of Preferential Network Motif Generation in an Artificial Regulatory Network Model Created by Duplication and Divergence , 2007, Adv. Complex Syst..