AUTONOMIC DATA MANAGEMENT FOR EXTREME SCALE COUPLED SCIENTIFIC WORKFLOWS

OF THE DISSERTATION Autonomic Data Management for Extreme Scale Coupled Scientific Workflows

[1]  Chaoli Wang,et al.  Information Theory in Scientific Visualization , 2011, Entropy.

[2]  Scott Klasky,et al.  DART: a substrate for high speed asynchronous data IO , 2008, HPDC '08.

[3]  Chenyang Lu,et al.  Proceedings of the Fast 2002 Conference on File and Storage Technologies Aqueduct: Online Data Migration with Performance Guarantees , 2022 .

[4]  Fan Zhang,et al.  Enabling In-situ Execution of Coupled Scientific Workflow on Multi-core Platform , 2012, 2012 IEEE 26th International Parallel and Distributed Processing Symposium.

[5]  Seyed Masoud Sadjadi,et al.  ACT: an adaptive CORBA template to support unanticipated adaptation , 2004, 24th International Conference on Distributed Computing Systems, 2004. Proceedings..

[6]  Karsten Schwan,et al.  PreDatA – preparatory data analytics on peta-scale machines , 2010, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS).

[7]  Bertram Ludäscher,et al.  Scientific workflow management and the Kepler system: Research Articles , 2006 .

[8]  Karsten Schwan,et al.  Six degrees of scientific data: reading patterns for extreme scale science IO , 2011, HPDC '11.

[9]  Arie Shoshani,et al.  Parallel in situ indexing for data-intensive computing , 2011, 2011 IEEE Symposium on Large Data Analysis and Visualization.

[10]  Peter Desnoyers,et al.  Active flash: towards energy-efficient, in-situ data analytics on extreme-scale machines , 2013, FAST.

[11]  Peyman Oreizy,et al.  Architecture-based runtime software evolution , 1998, Proceedings of the 20th International Conference on Software Engineering.

[12]  Arie Shoshani,et al.  Hello ADIOS: the challenges and lessons of developing leadership class I/O frameworks , 2014, Concurr. Comput. Pract. Exp..

[13]  Roy Sterritt,et al.  Fulfilling the Vision of Autonomic Computing , 2010, Computer.

[14]  Roberto Ierusalimschy,et al.  ALua: flexibility for parallel programming , 2002, Comput. Lang. Syst. Struct..

[15]  David E. Smith,et al.  Integrating Policy with Scientific Workflow Management for Data-Intensive Applications , 2012, 2012 SC Companion: High Performance Computing, Networking Storage and Analysis.

[16]  Scott Klasky,et al.  An autonomic service architecture for self-managing grid applications , 2005, The 6th IEEE/ACM International Workshop on Grid Computing, 2005..

[17]  Ray W. Grout,et al.  EDO: Improving Read Performance for Scientific Applications through Elastic Data Organization , 2011, 2011 IEEE International Conference on Cluster Computing.

[18]  Kevin Skadron,et al.  Power-aware QoS management in Web servers , 2003, RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003.

[19]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[20]  Scott Klasky,et al.  DataSpaces: an interaction and coordination framework for coupled simulation workflows , 2012, HPDC '10.

[21]  Scott Klasky,et al.  Moving the Code to the Data - Dynamic Code Deployment Using ActiveSpaces , 2011, 2011 IEEE International Parallel & Distributed Processing Symposium.

[22]  Fan Zhang,et al.  A scalable messaging system for accelerating discovery from large scale scientific simulations , 2012, 2012 19th International Conference on High Performance Computing.

[23]  Ramanan Sankaran,et al.  Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure , 2009, Journal of Fluid Mechanics.

[24]  Miron Livny,et al.  Stork: making data placement a first class citizen in the grid , 2004, 24th International Conference on Distributed Computing Systems, 2004. Proceedings..

[25]  Arnold L. Rosenberg,et al.  A Tool for Prioritizing DAGMan Jobs and its Evaluation , 2007, Journal of Grid Computing.

[26]  Fei Meng,et al.  Functional Partitioning to Optimize End-to-End Performance on Many-core Architectures , 2010, 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis.

[27]  GhemawatSanjay,et al.  The Google file system , 2003 .

[28]  Thierry Poinsot,et al.  Large Eddy Simulation of Combustion on Massively Parallel Machines , 2008, VECPAR.

[29]  Daniel A. Reed,et al.  Learning to Classify Parallel Input/Output Access Patterns , 2002, IEEE Trans. Parallel Distributed Syst..

[30]  Ann L. Chervenak,et al.  Improving Scientific Workflow Performance Using Policy Based Data Placement , 2012, 2012 IEEE International Symposium on Policies for Distributed Systems and Networks.

[31]  Ann L. Chervenak,et al.  Adaptation and Policy-Based Resource Allocation for Efficient Bulk Data Transfers in High Performance Computing Environments , 2014, 2014 Fourth International Workshop on Network-Aware Data Management.

[32]  Kwan-Liu Ma,et al.  Importance-Driven Time-Varying Data Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[33]  Gunther H. Weber,et al.  Visualization of Scalar Adaptive Mesh Refinement Data , 2007 .

[34]  Choong-Seock Chang,et al.  Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry , 2009 .

[35]  Karsten Schwan,et al.  Dynamic adaptation of real-time software , 1991, TOCS.

[36]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[37]  Wu-chun Feng,et al.  A Power-Aware Run-Time System for High-Performance Computing , 2005, ACM/IEEE SC 2005 Conference (SC'05).

[38]  Marianne Winslett,et al.  High-level buffering for hiding periodic output cost in scientific simulations , 2006, IEEE Transactions on Parallel and Distributed Systems.

[39]  Lui Sha,et al.  Online response time optimization of Apache web server , 2003, IWQoS'03.

[40]  Darrell D. E. Long,et al.  The case for efficient file access pattern modeling , 1999, Proceedings of the Seventh Workshop on Hot Topics in Operating Systems.

[41]  Patrick R. Amestoy,et al.  High Performance Computing for Computational Science - VECPAR 2008 , 2008, Lecture Notes in Computer Science.

[42]  Takeo Kanade,et al.  Software Engineering for Self-Adaptive Systems II , 2013, Lecture Notes in Computer Science.

[43]  Kwan-Liu Ma In situ visualization at extreme scale: challenges and opportunities. , 2009, IEEE computer graphics and applications.

[44]  Fan Zhang,et al.  In-situ feature-based objects tracking for data-intensive scientific and enterprise analytics workflows , 2014, Cluster Computing.

[45]  Patrick M. Widener,et al.  Efficient Data-Movement for Lightweight I/O , 2006, 2006 IEEE International Conference on Cluster Computing.

[46]  Layuan Li,et al.  Three-layer control policy for grid resource management , 2009, J. Netw. Comput. Appl..

[47]  Mahmut T. Kandemir,et al.  Provisioning a Multi-tiered Data Staging Area for Extreme-Scale Machines , 2011, 2011 31st International Conference on Distributed Computing Systems.

[48]  Michael E. Papka,et al.  Toward simulation-time data analysis and I/O acceleration on leadership-class systems , 2011, 2011 IEEE Symposium on Large Data Analysis and Visualization.

[49]  Karan Gupta,et al.  GPFS-SNC: An enterprise storage framework for virtual-machine clouds , 2011, IBM J. Res. Dev..

[50]  Palden Lama,et al.  AROMA: automated resource allocation and configuration of mapreduce environment in the cloud , 2012, ICAC '12.

[51]  Karsten Schwan,et al.  DataStager: scalable data staging services for petascale applications , 2009, HPDC '09.

[52]  Daniel A. Reed,et al.  Automatic ARIMA time series modeling for adaptive I/O prefetching , 2004, IEEE Transactions on Parallel and Distributed Systems.

[53]  Robert Latham,et al.  ISABELA-QA: Query-driven analytics with ISABELA-compressed extreme-scale scientific data , 2011, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[54]  Scott Klasky,et al.  Terascale direct numerical simulations of turbulent combustion using S3D , 2008 .

[55]  Jeremy S. Meredith,et al.  Parallel in situ coupling of simulation with a fully featured visualization system , 2011, EGPGV '11.

[56]  J. L. Luxon,et al.  A design retrospective of the DIII-D tokamak , 2002 .

[57]  Wouter Joosen,et al.  A MVC Framework for Policy-Based Adaptation of Workflow Processes: A Case Study on Confidentiality , 2010, 2010 IEEE International Conference on Web Services.

[58]  Surendra Byna,et al.  Parallel I/O prefetching using MPI file caching and I/O signatures , 2008, 2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis.

[59]  Ray W. Grout,et al.  Dual space analysis of turbulent combustion particle data , 2011, 2011 IEEE Pacific Visualization Symposium.

[60]  Y. Charlie Hu,et al.  Program-Counter-Based Pattern Classification in Buffer Caching , 2004, OSDI.

[61]  Kenneth Moreland,et al.  Sandia National Laboratories , 2000 .

[62]  Sang Hyuk Son,et al.  Feedback Control Real-Time Scheduling: Framework, Modeling, and Algorithms* , 2001, Real-Time Systems.

[63]  Karsten Schwan,et al.  Just in time: adding value to the IO pipelines of high performance applications with JITStaging , 2011, HPDC '11.

[64]  Robert B. Ross,et al.  Omnisc'IO: A Grammar-Based Approach to Spatial and Temporal I/O Patterns Prediction , 2014, SC14: International Conference for High Performance Computing, Networking, Storage and Analysis.

[65]  K. Shin,et al.  Performance Guarantees for Web Server End-Systems: A Control-Theoretical Approach , 2002, IEEE Trans. Parallel Distributed Syst..

[66]  Carlos Maltzahn,et al.  I/O acceleration with pattern detection , 2013, HPDC.

[67]  Douglas L. Jones,et al.  Cross-layer adaptive video coding to reduce energy on general-purpose processors , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[68]  Karsten Schwan,et al.  FlexIO: I/O Middleware for Location-Flexible Scientific Data Analytics , 2013, 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.

[69]  Douglas L. Jones,et al.  GRACE-1: cross-layer adaptation for multimedia quality and battery energy , 2006, IEEE Transactions on Mobile Computing.

[70]  Ray W. Grout,et al.  Topological Feature Extraction for Comparison of Terascale Combustion Simulation Data , 2011, Topological Methods in Data Analysis and Visualization.

[71]  Cheng-Zhong Xu,et al.  eQoS: Provisioning of Client-Perceived End-to-End QoS Guarantees in Web Servers , 2006, IEEE Transactions on Computers.

[72]  Rajesh Gupta,et al.  Minerva: Accelerating Data Analysis in Next-Generation SSDs , 2013, 2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines.

[73]  Franco Zambonelli,et al.  A survey of autonomic communications , 2006, TAAS.

[74]  Naranker Dulay,et al.  Specifying Distributed Software Architectures , 1995, ESEC.

[75]  Song Jiang,et al.  Opportunistic Data-driven Execution of Parallel Programs for Efficient I/O Services , 2012, 2012 IEEE 26th International Parallel and Distributed Processing Symposium.

[76]  Tong Zhang,et al.  OFWAR: Reducing SSD Response Time Using On-Demand Fast-Write-and-Rewrite , 2014, IEEE Transactions on Computers.

[77]  Ray W. Grout,et al.  Ultrascale Visualization In Situ Visualization for Large-Scale Combustion Simulations , 2010 .

[78]  Rajeev Thakur,et al.  Pattern-Direct and Layout-Aware Replication Scheme for Parallel I/O Systems , 2013, 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.

[79]  David C. Thompson,et al.  Computing Contingency Statistics in Parallel: Design Trade-Offs and Limiting Cases , 2010, 2010 IEEE International Conference on Cluster Computing.

[80]  Ann L. Chervenak,et al.  Efficient Data Staging Using Performance-Based Adaptation and Policy-Based Resource Allocation , 2014, 2014 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing.

[81]  Yolanda Gil,et al.  Pegasus: Mapping Scientific Workflows onto the Grid , 2004, European Across Grids Conference.

[82]  Peyman Oreizy,et al.  Self-Adaptive Software: An Architecture-based Approach , 1999 .

[83]  I-Hsin Chung,et al.  Active Harmony: Towards Automated Performance Tuning , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[84]  Fan Zhang,et al.  Using cross-layer adaptations for dynamic data management in large scale coupled scientific workflows , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[85]  M. Parashar,et al.  Accord: a programming framework for autonomic applications , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[86]  Jeffrey O. Kephart,et al.  The Vision of Autonomic Computing , 2003, Computer.

[87]  Salim Hariri,et al.  Autonomic Computing: An Overview , 2004, UPP.

[88]  Fan Zhang,et al.  Combining in-situ and in-transit processing to enable extreme-scale scientific analysis , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.