Modeling and Optimization for Stationary Base Engine Calibration
暂无分享,去创建一个
[1] M. Aizerman,et al. Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .
[2] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[3] M. E. Johnson,et al. Some Guidelines for Constructing Exact D-Optimal Designs on Convex Design Spaces , 1983 .
[4] M. West. Outlier Models and Prior Distributions in Bayesian Linear Regression , 1984 .
[5] Oliver Nelles,et al. LOLIMOT - Lokale, lineare Modelle zur Identifikation nichtlinearer, dynamischer Systeme , 1997 .
[6] D. Cox,et al. An Analysis of Transformations , 1964 .
[7] Lothar Thiele,et al. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.
[8] Alex Simpkins,et al. System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.
[9] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[10] Man Ieee Systems,et al. IEEE transactions on systems, man and cybernetics. Part B, Cybernetics , 1996 .
[11] Heekuck Oh,et al. Neural Networks for Pattern Recognition , 1993, Adv. Comput..
[12] C. Rasmussen,et al. Approximations for Binary Gaussian Process Classification , 2008 .
[13] Gail D. Baura,et al. Nonlinear System Identification , 2002 .
[14] Anselm Schwarte,et al. Automatisierte Applikation von Motorsteuergeräten mit kontinuierlicher Motorvermessung , 2004 .
[15] Michael Hafner. Modellbasierte stationäre und dynamische Optimierung von Verbrennungsmotoren am Motorenprüfstand unter Verwendung neuronaler Netze , 2002 .
[16] Benjamin Berger,et al. Robust Gaussian Process Modelling for Engine Calibration , 2012 .
[17] Rolf Isermann,et al. Model-based control design for IC-engines on dynamometers: The toolbox "Optimot" , 2002 .
[18] L. Fahrmeir,et al. Regression - Modelle, Methoden und Anwendungen , 2009 .
[19] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[20] Leo Breiman,et al. Hinging hyperplanes for regression, classification, and function approximation , 1993, IEEE Trans. Inf. Theory.
[21] Ingo Rechenberg,et al. Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.
[22] Nicola Beume,et al. An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.
[23] Tom Minka,et al. A family of algorithms for approximate Bayesian inference , 2001 .
[24] A. O'Hagan,et al. On Outlier Rejection Phenomena in Bayes Inference , 1979 .
[25] H. Akaike. A new look at the statistical model identification , 1974 .
[26] M. Braga,et al. Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..
[27] Jorge J. Moré,et al. The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .
[28] Boris Lohmann,et al. Analysing Gaussian Processes for Stationary Black-Box Combustion Engine Modelling , 2011 .
[29] Carlos M. Fonseca,et al. An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.
[30] Carl E. Rasmussen,et al. Healing the relevance vector machine through augmentation , 2005, ICML.
[31] Radford M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .
[32] David H. Wolpert,et al. No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..
[33] Eric Walter,et al. Global optimization of expensive-to-evaluate functions: an empirical comparison of two sampling criteria , 2009, J. Glob. Optim..
[34] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[35] Joshua D. Knowles,et al. ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.
[36] Michael Deflorian,et al. Versuchsplanung und Methoden zur Identifikation zeitkontinuierlicher Zustandsraummodelle am Beispiel des Verbrennungsmotors , 2011 .
[37] Heiko Sequenz,et al. Ermittlung der Güte experimentell gewonnener Verbrennungsmotor-Modelle , 2007 .
[38] Rolf Isermann,et al. Stationary Global-Local Emission Models of a CR-Diesel Engine with Adaptive Regressor Selection for Measurements of Airpath and Combustion , 2010 .
[39] Radford M. Neal. Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification , 1997, physics/9701026.
[40] Karsten Röpke,et al. Rapid Measurement: Grundbedatung eines Verbrennungsmotors innerhalb eines Tages? , 2007 .
[41] San Cristóbal Mateo,et al. The Lack of A Priori Distinctions Between Learning Algorithms , 1996 .
[42] H. Niedernolte,et al. Workflow for data evaluation during basic calibration of combustion engines , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.
[43] Rolf Isermann,et al. Fast Neural Networks for Diesel Engine Control Design , 1999 .
[44] Carl E. Rasmussen,et al. Gaussian Processes for Machine Learning (GPML) Toolbox , 2010, J. Mach. Learn. Res..
[45] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[46] Stefan Kurz,et al. Modern Statistical Modeling and Evolutionary Optimization Methods for the Broad Use in ECU Calibration , 2010 .
[47] David B. Fogel,et al. Evolutionary algorithms in theory and practice , 1997, Complex.
[48] Bruno De Finetti,et al. The Bayesian Approach to the Rejection of Outliers , 1961 .
[49] M. Fleischer,et al. The Measure of Pareto Optima , 2003, EMO.
[50] Shigeru Obayashi,et al. Efficient global optimization (EGO) for multi-objective problem and data mining , 2005, 2005 IEEE Congress on Evolutionary Computation.
[51] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[52] Wolfgang Ponweiser,et al. Clustered multiple generalized expected improvement: A novel infill sampling criterion for surrogate models , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).
[53] D. Wolpert. The Supervised Learning No-Free-Lunch Theorems , 2002 .
[54] David J. C. MacKay,et al. A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.
[55] Marco Laumanns,et al. SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .
[56] Eric Walter,et al. An informational approach to the global optimization of expensive-to-evaluate functions , 2006, J. Glob. Optim..
[57] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[58] L. Magee. Nonlocal Behavior in Polynomial Regressions , 1998 .
[59] Horst Pfluegl,et al. Steigerung der Effizienz in der modellbasierten Motoren-applikation durch die neue CAMEO Online DoE-Toolbox , 2001 .
[60] Rolf Isermann,et al. Effiziente Motorapplikation mit lokal linearen neuronalen Netzen , 2003 .
[61] Rolf Isermann,et al. Modellgestützte Steuerung, Regelung und Diagnose von Verbrennungsmotoren , 2003 .
[62] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[63] Iain Murray. Introduction To Gaussian Processes , 2008 .
[64] Florian Steinke,et al. Bayesian Inference and Optimal Design in the Sparse Linear Model , 2007, AISTATS.
[65] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[66] S. Ernst,et al. Hinging hyperplane trees for approximation and identification , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).