Modeling and Optimization for Stationary Base Engine Calibration

This thesis presents new approaches for modeling and optimization for stationary base engine calibration. At first, the most suitable type of modeling for this topic is determined in an extensive comparison. Afterwards, this technique is extended by new features, e.g. outlier-robustness, in order to achieve a dependable performance of the model even under complex and difficult circumstances. Subsequently, a new model-based multi-objective online optimization is presented, which is able to automatically identify the Pareto-optimal areas of the combustion engine with a permanent online-connection between the optimization algorithms and the test bench. Various theoretical examples and practical applications demonstrate the performance of these new approaches.

[1]  M. Aizerman,et al.  Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .

[2]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[3]  M. E. Johnson,et al.  Some Guidelines for Constructing Exact D-Optimal Designs on Convex Design Spaces , 1983 .

[4]  M. West Outlier Models and Prior Distributions in Bayesian Linear Regression , 1984 .

[5]  Oliver Nelles,et al.  LOLIMOT - Lokale, lineare Modelle zur Identifikation nichtlinearer, dynamischer Systeme , 1997 .

[6]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[7]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[8]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[9]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[10]  Man Ieee Systems,et al.  IEEE transactions on systems, man and cybernetics. Part B, Cybernetics , 1996 .

[11]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[12]  C. Rasmussen,et al.  Approximations for Binary Gaussian Process Classification , 2008 .

[13]  Gail D. Baura,et al.  Nonlinear System Identification , 2002 .

[14]  Anselm Schwarte,et al.  Automatisierte Applikation von Motorsteuergeräten mit kontinuierlicher Motorvermessung , 2004 .

[15]  Michael Hafner Modellbasierte stationäre und dynamische Optimierung von Verbrennungsmotoren am Motorenprüfstand unter Verwendung neuronaler Netze , 2002 .

[16]  Benjamin Berger,et al.  Robust Gaussian Process Modelling for Engine Calibration , 2012 .

[17]  Rolf Isermann,et al.  Model-based control design for IC-engines on dynamometers: The toolbox "Optimot" , 2002 .

[18]  L. Fahrmeir,et al.  Regression - Modelle, Methoden und Anwendungen , 2009 .

[19]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[20]  Leo Breiman,et al.  Hinging hyperplanes for regression, classification, and function approximation , 1993, IEEE Trans. Inf. Theory.

[21]  Ingo Rechenberg,et al.  Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.

[22]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[23]  Tom Minka,et al.  A family of algorithms for approximate Bayesian inference , 2001 .

[24]  A. O'Hagan,et al.  On Outlier Rejection Phenomena in Bayes Inference , 1979 .

[25]  H. Akaike A new look at the statistical model identification , 1974 .

[26]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[27]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[28]  Boris Lohmann,et al.  Analysing Gaussian Processes for Stationary Black-Box Combustion Engine Modelling , 2011 .

[29]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[30]  Carl E. Rasmussen,et al.  Healing the relevance vector machine through augmentation , 2005, ICML.

[31]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[32]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[33]  Eric Walter,et al.  Global optimization of expensive-to-evaluate functions: an empirical comparison of two sampling criteria , 2009, J. Glob. Optim..

[34]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[35]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[36]  Michael Deflorian,et al.  Versuchsplanung und Methoden zur Identifikation zeitkontinuierlicher Zustandsraummodelle am Beispiel des Verbrennungsmotors , 2011 .

[37]  Heiko Sequenz,et al.  Ermittlung der Güte experimentell gewonnener Verbrennungsmotor-Modelle , 2007 .

[38]  Rolf Isermann,et al.  Stationary Global-Local Emission Models of a CR-Diesel Engine with Adaptive Regressor Selection for Measurements of Airpath and Combustion , 2010 .

[39]  Radford M. Neal Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification , 1997, physics/9701026.

[40]  Karsten Röpke,et al.  Rapid Measurement: Grundbedatung eines Verbrennungsmotors innerhalb eines Tages? , 2007 .

[41]  San Cristóbal Mateo,et al.  The Lack of A Priori Distinctions Between Learning Algorithms , 1996 .

[42]  H. Niedernolte,et al.  Workflow for data evaluation during basic calibration of combustion engines , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[43]  Rolf Isermann,et al.  Fast Neural Networks for Diesel Engine Control Design , 1999 .

[44]  Carl E. Rasmussen,et al.  Gaussian Processes for Machine Learning (GPML) Toolbox , 2010, J. Mach. Learn. Res..

[45]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[46]  Stefan Kurz,et al.  Modern Statistical Modeling and Evolutionary Optimization Methods for the Broad Use in ECU Calibration , 2010 .

[47]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[48]  Bruno De Finetti,et al.  The Bayesian Approach to the Rejection of Outliers , 1961 .

[49]  M. Fleischer,et al.  The Measure of Pareto Optima , 2003, EMO.

[50]  Shigeru Obayashi,et al.  Efficient global optimization (EGO) for multi-objective problem and data mining , 2005, 2005 IEEE Congress on Evolutionary Computation.

[51]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[52]  Wolfgang Ponweiser,et al.  Clustered multiple generalized expected improvement: A novel infill sampling criterion for surrogate models , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[53]  D. Wolpert The Supervised Learning No-Free-Lunch Theorems , 2002 .

[54]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[55]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[56]  Eric Walter,et al.  An informational approach to the global optimization of expensive-to-evaluate functions , 2006, J. Glob. Optim..

[57]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[58]  L. Magee Nonlocal Behavior in Polynomial Regressions , 1998 .

[59]  Horst Pfluegl,et al.  Steigerung der Effizienz in der modellbasierten Motoren-applikation durch die neue CAMEO Online DoE-Toolbox , 2001 .

[60]  Rolf Isermann,et al.  Effiziente Motorapplikation mit lokal linearen neuronalen Netzen , 2003 .

[61]  Rolf Isermann,et al.  Modellgestützte Steuerung, Regelung und Diagnose von Verbrennungsmotoren , 2003 .

[62]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[63]  Iain Murray Introduction To Gaussian Processes , 2008 .

[64]  Florian Steinke,et al.  Bayesian Inference and Optimal Design in the Sparse Linear Model , 2007, AISTATS.

[65]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[66]  S. Ernst,et al.  Hinging hyperplane trees for approximation and identification , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).