On the theories of type 1 polar stratospheric cloud formation

Several mechanisms for the production of polar stratospheric cloud (PSC) particles are investigated using the classical theories of nucleation and freezing and the multicomponent condensation theory. These mechanisms invoke particle compositions ranging from binary (H 2 SO 4 /H 2 O) solution, solid sulfuric acid tetrahydrate (SAT) and ternary (HNO 3 /H 2 O/H 2 5O 4 ) solution to binary (HNO 3 /H 2 O) solution and solid nitric acid trihydrate (NAT). Empirical relations, derived from classical nucleation studies, are used to calculate the surface energies required in calculations of nucleation and freezing. Using these data, we calculate that the nucleation of nitric acid solutions or solid phases onto SAT particles is not efficient. Homogeneous freezing of SAT or NAT from ternary solutions does not occur under stratospheric conditions. Homogeneous freezing of water ice can occur at temperatures near the frost point of pure water. Heterogeneous freezing is a strong function of the contact parameter between the emergent crystal and the initiating seed particle. Heterogeneous freezing of the stratospheric aerosol to SAT and NAT at temperatures above the frost point is not ruled out by our calculations. If formed, NAT can deplete the gas phase nitric acid concentration, by condensational growth, more efficiently than ternary droplets. We conclude that the most likely route to type 1 PSC particles is via condensational growth of ternary solution droplets followed by rapid freezing to NAT, SAT, and water ice at temperatures near the ice frost point. The particles formed are then stable and can reduce nitric acid vapor pressures to the saturation vapor pressure over NAT at all temperatures below the NAT point. Such a mechanism is consistent with observations.

[1]  E. Browell,et al.  An analysis of lidar observations of polar stratospheric clouds , 1990 .

[2]  A. Kirkland,et al.  The Morphology and Microstructure of Colloidal Silver and Gold , 1987 .

[3]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[4]  M. Kulmala,et al.  An analytical expression for the rate of binary condensational particle growth , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[5]  M. Kulmala,et al.  Homogeneous heteromolecular nucleation of sulphuric acid and water vapours in stratospheric conditions: a theoretical study of the effect of hydrate interaction , 1991 .

[6]  Terry Deshler,et al.  Electron microscope studies of Mt. Pinatubo aerosol layers over Laramie, Wyoming during summer 1991 , 1992 .

[7]  G. R. Wood,et al.  Homogeneous Nucleation Kinetics of Ice from Water , 1970 .

[8]  S. Wofsy,et al.  Nucleation and Growth of HNO3.3H2O Particles in the Polar Stratosphere , 1990 .

[9]  T. Kjällman,et al.  Hydrogen bond studies. LVIII. The crystal structures of normal and deuterated sulphuric acid tetrahydrate, (H5O2+)2SO42− and (D5O2+)2SO42− , 1972 .

[10]  A. MacKenzie,et al.  The influence of surface kinetics on the growth of stratospheric ice crystals , 1992 .

[11]  G. Toon,et al.  Heterogeneous Reaction Probabilities, Solubilities, and the Physical State of Cold Volcanic Aerosols , 1993, Science.

[12]  D. Oxtoby Nucleation of Crystals from the Melt a , 1986 .

[13]  D. Fahey,et al.  The Arctic polar stratospheric cloud aerosol: Aircraft measurements of reactive nitrogen, total water, and particles , 1992 .

[14]  W. Giauque,et al.  The Thermodynamic Properties of Aqueous Sulfuric Acid Solutions and Hydrates from 15 to 300°K.1 , 1960 .

[15]  A. Middlebrook,et al.  Characterization of model polar stratospheric cloud films using Fourier transform infrared spectroscopy and temperature programmed desorption , 1992 .

[16]  M. Patrick McCormick,et al.  Polar stratospheric clouds and the Antarctic ozone hole , 1988 .

[17]  T. Vesala,et al.  Condensation in the continuum regime , 1991 .

[18]  T. Vesala,et al.  The effect of atmospheric nitric acid vapor on cloud condensation nucleus activation , 1993 .

[19]  S. Hardy A grain boundary groove measurement of the surface tension between ice and water , 1977 .

[20]  F. Küster,et al.  Über die Hydrate der Salpetersäure. Eine Antwort an Herrn Hugo Erdmann , 1904 .

[21]  Roland H. Smith Formation of nitric acid hydrates ‐ A chemical equilibrium approach , 1990 .

[22]  Laurie S. McNeill,et al.  Fourier transform-infrared studies of thin H2SO4/H2O films: Formation, water uptake, and solid-liquid phase changes , 1993 .

[23]  R. Turco,et al.  Aerosol nucleation in the winter Arctic and Antarctic stratospheres , 1990 .

[24]  N. Farlow,et al.  Stratospheric aerosols: Undissolved granules and physical state , 1977 .

[25]  R. Turco,et al.  Physical processes in polar stratospheric ice clouds , 1989 .

[26]  R. Turco,et al.  Denitrification through PSC formation: A 1-D model incorporating temperature oscillations , 1991 .

[27]  Annick Voirol Etude physico-chimique de la formation des aerosols : application aux pluies acides et a la stratosphere , 1988 .

[28]  M. Lazaridis,et al.  Binary heterogeneous nucleation at a non-uniform surface , 1992 .

[29]  P. Crutzen,et al.  Maximum Supercooling of H2SO4 Acid Aerosol Droplets , 1992 .

[30]  F. Arnold Stratospheric Aerosol Increases and Ozone Destruction: Implications from Mass Spectrometer Measurements , 1992 .

[31]  K. Mauersberger,et al.  Laboratory simulations of PSC particle formation , 1993 .

[32]  J. Gras,et al.  On the vapor pressure of sulfuric acid , 1980 .

[33]  G. Wilemski Composition of the critical nucleus in multicomponent vapor nucleation , 1984 .

[34]  J. S. Rowlinson,et al.  Molecular Thermodynamics of Fluid-Phase Equilibria , 1969 .

[35]  K. Kelly,et al.  Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation , 1992 .

[36]  A. Dillmann,et al.  A refined droplet approach to the problem of homogeneous nucleation from the vapor phase , 1991 .

[37]  W. Giauque,et al.  The Entropies of Nitric Acid and its Mono- and Tri-hydrates. Their Heat Capacities from 15 to 300°K. The Heats of Dilution at 298.1°K. The Internal Rotation and Free Energy of Nitric Acid Gas. The Partial Pressures over its Aqueous Solutions , 1942 .

[38]  R. Turco,et al.  A study of type I polar stratospheric cloud formation , 1994 .

[39]  Xiang‐Yang Liu The surface free energy of solid–fluid interfaces: An inhomogeneous cell model description , 1993 .

[40]  R. Turco,et al.  Condensation of HNO3 and HCl in the winter polar stratospheres , 1986 .

[41]  K. Snetsinger,et al.  Condensed nitrate, sulfate, and chloride in Antarctic stratospheric aerosols , 1989 .

[42]  D. Fahey,et al.  In situ measurements of total reactive nitrogen, total water, and aerosol in a polar stratospheric cloud in the Antarctic , 1989 .

[43]  D. Turnbull Formation of Crystal Nuclei in Liquid Metals , 1950 .

[44]  S. H. Maron,et al.  Phase Equilibria of the System Sulfur Trioxide-Water1 , 1950 .

[45]  J. Devlin,et al.  Infrared spectra of nitric and hydrochloric acid hydrate thin films , 1991 .

[46]  Paul J. Crutzen,et al.  Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles , 1994 .

[47]  N. Fletcher Size Effect in Heterogeneous Nucleation , 1958 .

[48]  D. R. Hanson,et al.  Vapor pressures of HNO/sub 3//H/sub 2/O solutions at low temperatures , 1988 .

[49]  H. H. G. Jellinek,et al.  Liquid-like (transition) layer on ice , 1964 .

[50]  R. Delaplane,et al.  Hydrogen bond studies. XCIV. Diaquaoxonium ion in nitric acid trihydrate , 1975 .

[51]  M. Molina,et al.  Physical Chemistry of the H2SO4/HNO3/H2O System: Implications for Polar Stratospheric Clouds , 1993, Science.

[52]  M. Kulmala,et al.  Binary nucleation of water–sulfuric acid system: Comparison of classical theories with different H2SO4 saturation vapor pressures , 1990 .

[53]  D. R. Hanson The vapor pressures of supercooled HNO3/H2O solutions , 1990 .

[54]  M. Molina,et al.  Vapor pressure measurements for sulfuric acid/nitric acid/water and sulfuric acid/hydrochloric acid/water systems: incorporation of stratospheric acids into background sulfate aerosols , 1993 .

[55]  M. Zahniser,et al.  Vapor Pressures of Solid Hydrates of Nitric Acid: Implications for Polar Stratospheric Clouds , 1993, Science.

[56]  S. Oltmans,et al.  Balloon borne observations of PSCs, Frost Point, ozone and nitric acid in the north polar vortex , 1989 .

[57]  James E. Dye,et al.  Analysis of the physical state of one Arctic polar stratospheric , 1994 .

[58]  P. Crutzen,et al.  Freezing of stratospheric aerosol droplets , 1994 .

[59]  G. S. Kent,et al.  Airborne lidar observations of Arctic polar stratospheric clouds , 1986 .

[60]  R. Turco,et al.  A one-dimensional model describing aerosol formation and evolution in the stratosphere: II. Sensitivity studies and comparison with observations , 1979 .

[61]  R. Turco,et al.  Stratospheric aerosols: Observation and theory , 1982 .

[62]  David R. Hanson,et al.  Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere , 1988 .

[63]  D. Fahey,et al.  Observations of denitrification and dehydration in the winter polar stratospheres , 1990, Nature.

[64]  P. Hamill,et al.  Homogeneous freezing nucleation of stratospheric solution droplets , 1991 .

[65]  K. Kelly,et al.  Observed particle evolution in the polar stratospheric cloud of January 24, 1989 , 1990 .