Fast Kernel Learning for Multidimensional Pattern Extrapolation
暂无分享,去创建一个
Andrew Gordon Wilson | Elad Gilboa | John P. Cunningham | Arye Nehorai | A. G. Wilson | J. Cunningham | A. Nehorai | Elad Gilboa | A. Wilson
[1] S. Bochner. Lectures on Fourier Integrals. (AM-42) , 1959 .
[2] R. V. Churchill,et al. Lectures on Fourier Integrals , 1959 .
[3] A. O'Hagan,et al. Curve Fitting and Optimal Design for Prediction , 1978 .
[4] Temple F. Smith. Occam's razor , 1980, Nature.
[5] David Haussler,et al. Occam's Razor , 1987, Inf. Process. Lett..
[6] R. Fildes. Journal of the Royal Statistical Society (B): Gary K. Grunwald, Adrian E. Raftery and Peter Guttorp, 1993, “Time series of continuous proportions”, 55, 103–116.☆ , 1993 .
[7] David J. C. MacKay,et al. BAYESIAN NON-LINEAR MODELING FOR THE PREDICTION COMPETITION , 1996 .
[8] Geoffrey E. Hinton,et al. Evaluation of Gaussian processes and other methods for non-linear regression , 1997 .
[9] G. Micula,et al. Numerical Treatment of the Integral Equations , 1999 .
[10] Christopher K. I. Williams,et al. Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.
[11] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[12] John Shawe-Taylor,et al. The Stability of Kernel Principal Components Analysis and its Relation to the Process Eigenspectrum , 2002, NIPS.
[13] Neil D. Lawrence,et al. Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.
[14] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[15] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[16] Alexei A. Efros,et al. Scene completion using millions of photographs , 2007, SIGGRAPH 2007.
[17] Benjamin Recht,et al. Random Features for Large-Scale Kernel Machines , 2007, NIPS.
[18] Sean B. Holden,et al. The Generalized FITC Approximation , 2007, NIPS.
[19] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[20] Ryan P. Adams,et al. Slice sampling covariance hyperparameters of latent Gaussian models , 2010, NIPS.
[21] Carl E. Rasmussen,et al. Sparse Spectrum Gaussian Process Regression , 2010, J. Mach. Learn. Res..
[22] Ethem Alpaydin,et al. Multiple Kernel Learning Algorithms , 2011, J. Mach. Learn. Res..
[23] Andrew Gordon Wilson,et al. Gaussian Process Kernels for Pattern Discovery and Extrapolation , 2013, ICML.
[24] Ramani Duraiswami,et al. Fast Near-GRID Gaussian Process Regression , 2013, AISTATS.
[25] Alexander J. Smola,et al. Fastfood - Computing Hilbert Space Expansions in loglinear time , 2013, ICML.
[26] Joshua B. Tenenbaum,et al. Structure Discovery in Nonparametric Regression through Compositional Kernel Search , 2013, ICML.
[27] Neil D. Lawrence,et al. Gaussian Processes for Big Data , 2013, UAI.
[28] Christine Guillemot,et al. Image Inpainting : Overview and Recent Advances , 2014, IEEE Signal Processing Magazine.
[29] Elad Gilboa,et al. Scaling Multidimensional Inference for Structured Gaussian Processes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.