Application of Levy processes and Esscher transformed martingale measures for option pricing in fuzzy framework

In this paper we consider the European option valuation problem. We assume that the underlying asset follows a geometric Levy process. The log-price is a sum of a Brownian motion with drift and a linear combination of Poisson processes describing jumps in price. In our approach we use martingale method and theory of fuzzy sets. To obtain the European call and put option pricing formulas we use the mean correcting and the Esscher transformed martingale measures. Application of the first mentioned measure required deep analysis of transformation of characteristics of Levy process. We assume that some model parameters cannot be precisely described and therefore we apply fuzzy numbers. Application of fuzzy arithmetic enables us to consider different sources of uncertainty and introduce experts' opinions or imprecise estimates to the model. In contradistinction to our previous papers, where the European call option price at time zero was analysed, we introduce the valuation expressions of the European call and put options for arbitrary time t. Numerical simulations conducted in the paper are used to analyse and illustrate the theoretical results. This numerical approach is based on L-R numbers and the exact shape of the fuzzy numbers which give us the possibility of comparing behaviour of option prices for various values of the parameters of the underlying asset.

[1]  Chuntian Cheng,et al.  Long-Term Prediction of Discharges in Manwan Reservoir Using Artificial Neural Network Models , 2005, ISNN.

[2]  Aleksandar Mijatovic,et al.  Approximating Levy Processes with a View to Option Pricing , 2009 .

[3]  Yuji Yoshida,et al.  The valuation of European options in uncertain environment , 2003, Eur. J. Oper. Res..

[4]  Jun Zhang,et al.  Multilayer Ensemble Pruning via Novel Multi-sub-swarm Particle Swarm Optimization , 2009, J. Univers. Comput. Sci..

[5]  M. Pistorius,et al.  A transform approach to compute prices and Greeks of barrier options driven by a class of Lévy processes , 2008, 0812.3128.

[6]  A. Shiryaev Essentials of stochastic finance , 1999 .

[7]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[8]  S. Asmussen,et al.  Russian and American put options under exponential phase-type Lévy models , 2004 .

[9]  Robert Fullér,et al.  On Weighted Possibilistic Mean and Variance of Fuzzy Numbers , 2002, Fuzzy Sets Syst..

[10]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[11]  Steven Kou,et al.  Option Pricing Under a Mixed-Exponential Jump Diffusion Model , 2011, Manag. Sci..

[12]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[13]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[14]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[15]  Kwok-wing Chau,et al.  Application of a PSO-based neural network in analysis of outcomes of construction claims , 2007 .

[16]  Study on Catastrophe Bond Pricing Model Based on Behavioral Finance , 2007, 2007 International Conference on Management Science and Engineering.

[17]  K. Chau,et al.  Predicting monthly streamflow using data‐driven models coupled with data‐preprocessing techniques , 2009 .

[18]  Nan Chen,et al.  Pricing double-barrier options under a flexible jump diffusion model , 2009, Oper. Res. Lett..

[19]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[20]  Ching-Ping Wang,et al.  Using neural network for forecasting TXO price under different volatility models , 2012, Expert Syst. Appl..

[21]  Fei Chen,et al.  Pricing and Hedging Short Sterling Options Using Neural Networks , 2011, Intell. Syst. Account. Finance Manag..

[22]  Rajandrea Sethi,et al.  Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon , 2012, Eng. Appl. Artif. Intell..

[23]  Hsien-Chung Wu,et al.  Using fuzzy sets theory and Black-Scholes formula to generate pricing boundaries of European options , 2007, Appl. Math. Comput..

[24]  Maciej Romaniuk,et al.  A fuzzy approach to option pricing in a Levy process setting , 2013, Int. J. Appl. Math. Comput. Sci..

[25]  A. Shiryaev Essentials of stochastic finance , 1999 .

[26]  Luciano Stefanini,et al.  Option price sensitivities through fuzzy numbers , 2011, Comput. Math. Appl..

[27]  A. M. Gil-Lafuente Fuzzy Logic in Financial Analysis , 2005 .

[28]  Maciej Romaniuk,et al.  Computing option price for Levy process with fuzzy parameters , 2010, Eur. J. Oper. Res..

[29]  Lucien Duckstein,et al.  Fuzzy Rule-Based Modeling with Applications to Geophysical, Biological and Engineering Systems , 1995 .

[30]  M. Musiela,et al.  Martingale Methods in Financial Modelling , 2002 .

[31]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[32]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[33]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[34]  Mark H. A. Davis Mathematics of Financial Markets , 2001 .

[35]  Wei-guo Zhang,et al.  The double exponential jump diffusion model for pricing European options under fuzzy environments , 2012 .

[36]  Yang Han,et al.  A neural network model based on the multi-stage optimization approach for short-term food price forecasting in China , 2007, Expert Syst. Appl..

[37]  Hsien-Chung Wu,et al.  Pricing European options based on the fuzzy pattern of Black-Scholes formula , 2004, Comput. Oper. Res..

[38]  S. Boyarchenko,et al.  User's Guide to Pricing Double Barrier Options. Part I: Kou's Model and Generalizations , 2008 .

[39]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[40]  Hongyi Li,et al.  Foreign equity option pricing under stochastic volatility model with double jumps , 2011 .

[41]  Piotr Nowak,et al.  ON JACOD–GRIGELIONIS CHARACTERISTICS FOR HILBERT SPACE VALUED SEMIMARTINGALES , 2002 .

[42]  Leandro Maciel,et al.  A Hybrid Fuzzy GJR-GARCH Modeling Approach for Stock Market Volatility Forecasting , 2012 .

[43]  Robert J. Elliott,et al.  Mathematics of Financial Markets , 1999 .

[44]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[45]  Gang Yang,et al.  A note on the mean correcting martingale measure for geometric Lévy processes , 2011, Appl. Math. Lett..

[46]  Ren Asmussen,et al.  Russian and American put optionsunder exponential phase , 2002 .

[47]  Noelle Foreshaw Options… , 2010 .

[48]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[49]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[50]  Kwok-Wing Chau,et al.  A new image thresholding method based on Gaussian mixture model , 2008, Appl. Math. Comput..

[51]  Yoshio Miyahara,et al.  Martingale measures for the geometric Lévy process models , 2005 .