Mesoscopic resistive switch: non-volatility, hysteresis and negative differential resistance

Abstract We show how a simple model nanoswitch can perform as a memory resistor. Its resistance is determined by electron tunneling through a nanoparticle diffusing around one or more potential minima located between the electrodes in the presence of Joule’s heat dissipation. In the case of a single potential minimum, we observe hysteresis of the resistance at finite applied currents and negative differential resistance. For two (or more) minima the switching mechanism is non-volatile, meaning that the memristor can switch to a resistive state of choice and stay there. Moreover, the noise spectra of the switch exhibit 1/f2 → 1/f crossover, in agreement with recent experimental results.

[1]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[2]  Liesbeth Venema,et al.  Silicon electronics and beyond , 2011, Nature.

[3]  S. Savel'ev,et al.  Stochastic transport of interacting particles in periodically driven ratchets. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  慶應義塾大学工学部 Keio science and technology reports , 1981 .

[5]  F. Marchesoni,et al.  Artificial Brownian motors: Controlling transport on the nanoscale , 2008, 0807.1283.

[6]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[7]  C. N. Lau,et al.  Force modulation of tunnel gaps in metal oxide memristive nanoswitches , 2009 .

[8]  Werner Horsthemke,et al.  Noise-induced transitions , 1984 .

[9]  M. Kiselev,et al.  Nanoelectromechanics of shuttle devices , 2013, 1303.0740.

[10]  R. Stanley Williams,et al.  Current-controlled negative differential resistance due to Joule heating in TiO2 , 2011, 1108.3120.

[11]  C. A. Perroni,et al.  Probing nonlinear mechanical effects through electronic currents: The case of a nanomechanical resonator acting as an electronic transistor , 2012, 1203.2597.

[12]  R. Stanley Williams,et al.  Molecular dynamics simulations of oxide memristors: thermal effects , 2010, 1012.5514.

[13]  Quantum electromechanics: Quantum tunneling near resonance and qubits from buckling nanoscale bars , 2006, cond-mat/0601019.

[14]  Y. Blanter,et al.  Self-consistent theory of molecular switching , 2008, 0806.1151.

[15]  F. Ritort,et al.  The nonequilibrium thermodynamics of small systems , 2005 .

[16]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[17]  F. Marken,et al.  Nanomechanical electron shuttle consisting of a gold nanoparticle embedded within the gap between two gold electrodes , 2009 .

[18]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[19]  M. Pickett,et al.  A scalable neuristor built with Mott memristors. , 2013, Nature materials.

[20]  F. Nori,et al.  Quantum electromechanics: qubits from buckling nanobars , 2004, cond-mat/0412521.

[21]  John Paul Strachan,et al.  Morphological and electrical changes in TiO2 memristive devices induced by electroforming and switching , 2009 .

[22]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[23]  T. Brandes,et al.  Semiclassical dynamics of nanoelectromechanical systems , 2010, 1006.2076.

[24]  Brian L. Dipert,et al.  Designing with flash memory , 1993 .

[25]  R Stanley Williams,et al.  Molecular dynamics simulations of oxide memory resistors (memristors) , 2010, Nanotechnology.

[26]  R. Stanley Williams,et al.  Molecular dynamics simulations of oxide memristors: Crystal field effects , 2011, 1105.4445.

[27]  Lei Wang,et al.  Colloquium : Phononics: Manipulating heat flow with electronic analogs and beyond , 2012 .

[28]  Napoli,et al.  Stochastic dynamics for a single vibrational mode in molecular junctions , 2010, 1011.4461.

[29]  F. Nori,et al.  Interacting particles on a rocked ratchet: rectification by condensation. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[31]  Büttiker,et al.  Role of quantum coherence in series resistors. , 1986, Physical review. B, Condensed matter.

[32]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[33]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[34]  F. Marchesoni,et al.  The range of validity of the current procedures of adiabatic elimination: Experimental and theoretical evidence , 1984 .

[35]  M. Pederson,et al.  Electron transport through molecular junctions , 2011 .