Cutinases: properties and industrial applications.

Cutinases, also known as cutin hydrolases (EC 3.1.1.74) are enzymes first discovered from phytopathogenic fungi that grow on cutin as the sole carbon source. Cutin is a complex biopolymer composed of epoxy and hydroxy fatty acids, and forms the structural component of higher plants cuticle. These enzymes share catalytic properties of lipases and esterases, presenting a unique feature of being active regardless the presence of an oil-water interface, making them interesting as biocatalysts in several industrial processes involving hydrolysis, esterification, and trans-esterification reactions. Cutinases present high stability in organic solvents and ionic liquids, both free and microencapsulated in reverse micelles. These characteristics allow the enzyme application in different areas such as food industry, cosmetics, fine chemicals, pesticide and insecticide degradation, treatment and laundry of fiber textiles, and polymer chemistry. The present chapter describes the characteristics, potential applications, and new perspectives for these enzymes.

[1]  E. Macedo,et al.  Cutinase activity in supercritical and organic media: water activity, solvation and acid–base effects , 2005 .

[2]  F. Kolisis,et al.  Studies on the enzymatic synthesis of lipophilic derivatives of natural antioxidants , 1999 .

[3]  Recombinant Saccharomyces cerevisiae strain triggers acetate production to fuel biosynthetic pathways. , 2004, Journal of biotechnology.

[4]  V. John,et al.  Lipase Catalysis and Its Applications , 1991 .

[5]  M. Aires-Barros,et al.  Cutinase: from molecular level to bioprocess development. , 1999, Biotechnology and bioengineering.

[6]  H. Chambers 1 – Organophosphorus Compounds: An Overview , 1992 .

[7]  Rolf-Joachim Mueller,et al.  Biological degradation of synthetic polyesters—Enzymes as potential catalysts for polyester recycling , 2006 .

[8]  M. R. Egmond,et al.  Fusarium solani pisi cutinase. , 2000, Biochimie.

[9]  A. Klibanov Enzymatic catalysis in anhydrous organic solvents. , 1989, Trends in biochemical sciences.

[10]  M. A. Sanromán,et al.  Production of Food Aroma Compounds: Microbial and Enzymatic Methodologies , 2006 .

[11]  W. Schwack,et al.  Cutinase inhibition by means of insecticidal organophosphates and carbamates , 2007, Journal of agricultural and food chemistry.

[12]  H. Berendsen,et al.  FUSARIUM SOLANI PISI CUTINASE: CONSEQUENCES FOR STABILITY IN THE PRESENCE OF SURFACTANTS , 2001 .

[13]  C. T. Verrips,et al.  Mechanism of removal of immobilized triacylglycerol by lipolytic enzymes in a sequential laundry wash process , 1998 .

[14]  P. Villeneuve,et al.  Phenolic acids enzymatic lipophilization. , 2005, Journal of agricultural and food chemistry.

[15]  M. Aires-Barros,et al.  Kinetics of cutinase catalyzed transesterification in AOT reversed micelles: modeling of a batch stirred tank reactor. , 2000, Journal of biotechnology.

[16]  M. Egmond,et al.  Cutinase from Fusarium solani pisi hydrolyzing triglyceride analogues. Effect of acyl chain length and position in the substrate molecule on activity and enantioselectivity. , 1995, Biochemistry.

[17]  R. Henderson,et al.  NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di-n-hexyl phthalate. , 2002, Reproductive toxicology.

[18]  V. Nierstrasz,et al.  Enzymatic surface modification of poly(ethylene terephthalate). , 2005, Journal of biotechnology.

[19]  C. Triantaphylidès,et al.  Lipase catalyzed formation of flavour esters , 1988, Biotechnology Letters.

[20]  C. R. Soccol,et al.  The realm of microbial lipases in biotechnology , 1999, Biotechnology and applied biochemistry.

[21]  F. Gunstone What else besides commodity oils and fats , 1999 .

[22]  K J Kennedy,et al.  Testing of alkaline and enzymatic hydrolysis pretreatments for fat particles in slaughterhouse wastewater. , 2001, Bioresource technology.

[23]  E. Schacht,et al.  Stability studies of a recombinant cutinase immobilized to dextran and derivatized silica supports , 1999 .

[24]  T. Scheper,et al.  Enzymes in non-conventional phases , 1995 .

[25]  N. Kerry,et al.  Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. , 1997, Atherosclerosis.

[26]  S. Petersen,et al.  Protein engineering the surface of enzymes. , 1998, Journal of biotechnology.

[27]  H. Gérard,et al.  Screening of Nonfilamentous Bacteria for Production of Cutin-Degrading Enzymes , 1992, Applied and environmental microbiology.

[28]  Janice R. Lima e Renata T. Nassu Substitutos de Gorduras em Alimentos: Características e Aplicações , 1996 .

[29]  H. F. de Castro,et al.  Evaluation of different approaches for lipase catalysed synthesis of citronellyl acetate , 1997, Biotechnology Letters.

[30]  J. Lima,et al.  Phenolic acids and derivatives: studies on the relationship among structure, radical scavenging activity, and physicochemical parameters. , 2000, Journal of agricultural and food chemistry.

[31]  Sajja Hari Krishna,et al.  Developments and trends in enzyme catalysis in nonconventional media. , 2002, Biotechnology advances.

[32]  C. Bastioli Starch -Polymer Composites , 1995 .

[33]  R. Gross,et al.  A Cutinase with Polyester Synthesis Activity , 2007 .

[34]  R. Vinopal,et al.  Fusarium polycaprolactone depolymerase is cutinase , 1996, Applied and environmental microbiology.

[35]  B. Chang,et al.  Biodegradation of phthalate esters by two bacteria strains. , 2004, Chemosphere.

[36]  I. Maiti,et al.  Cutinases from fungi and pollen , 1981 .

[37]  N. Gandhi Applications of lipase , 1997 .

[38]  Gabriela Alves Macedo,et al.  Lipases de látex vegetais: propriedades e aplicações industriais , 2006 .

[39]  Valdir Soldi,et al.  Aplicações sintéticas de lipases imobilizadas em polímeros , 2004 .

[40]  Daniela Wosiack da Silva,et al.  Potencial de biocatálise enantiosseletiva de lipases microbianas , 2005 .

[41]  M. Akke,et al.  Unfolding and inactivation of cutinases by AOT and guanidine hydrochloride. , 2005, Biochimica et biophysica acta.

[42]  A. Marangoni,et al.  Biotechnological strategies for the modification of food lipids. , 1999, Biotechnology & genetic engineering reviews.

[43]  Gabriela Alves Macedo,et al.  Optimizing the production of cutinase by Fusarium oxysporum using response surface methodology , 2007 .

[44]  W. Soetaert,et al.  Bioflavours and fragrances via fermentation and biocatalysis , 2002 .

[45]  V. Balcão,et al.  Flavour development via lipolysis of milkfats: changes in free fatty acid pool , 2007 .

[46]  H. Sung,et al.  Effects and toxicity of phthalate esters to hemocytes of giant freshwater prawn, Macrobrachium rosenbergii. , 2003, Aquatic toxicology.

[47]  C. Akoh,et al.  Effect of reaction parameters on SP435 lipase-catalyzed synthesis of citronellyl acetate in organic solvent , 1994 .

[48]  A. Klibanov Improving enzymes by using them in organic solvents , 2001, Nature.

[49]  S. Petersen,et al.  Cutinase-AOT interactions in reverse micelles: the effect of 1-hexanol. , 2003, Chemistry and physics of lipids.

[50]  R. P. Mathur,et al.  Identification of metabolites of malathion in plant, water and soil by GC-MS. , 1997, Biomedical chromatography : BMC.

[51]  J. Vind,et al.  Studies on ferulic acid esterase activity in fungal lipases and cutinases , 2002 .

[52]  D. Thomas,et al.  Enzymatic synthesis of geraniol esters in a solvent-free system by lipases , 1996, Biotechnology Letters.

[53]  M. Haas,et al.  Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches , 2000 .

[54]  Artur Cavaco-Paulo,et al.  New enzymes with potential for PET surface modification , 2004 .

[55]  T. Pio,et al.  A rapid screening method for cutinase producing microorganisms , 2005 .

[56]  Michel Pina,et al.  Aptitude à la transestérification de quelques lipases régiosélectives 1-3. III. Stabilité de la régiosélectivité 1-3 , 1988 .

[57]  W. Zimmermann,et al.  Biocatalytic modification of polyethylene terephthalate fibres by esterases from actinomycete isolates , 2004 .

[58]  Joaquim M. S. Cabral,et al.  Improving cutinase stability in aqueous solution and in reverse micelles by media engineering , 2003 .

[59]  W. D. Murray,et al.  Microbiological and Enzymatic Production of Flavor and Fragrance Chemicals , 1989 .

[60]  T. Galloway,et al.  Immunotoxicity of Organophosphorous Pesticides , 2003, Ecotoxicology.

[61]  W. Schwack,et al.  Cutinase inhibition by means of insecticidal organophosphates and carbamates Part 2: screening of representative insecticides on cutinase activity , 2008 .

[62]  N. Barlas Toxicological Assessment of Biodegraded Malathion in Albino Mice , 1996, Bulletin of environmental contamination and toxicology.

[63]  P. N. Hobson,et al.  Bioconversion of waste materials to industrial products , 1998 .

[64]  R. Henderson,et al.  NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di(2-ethylhexyl) phthalate. , 2002, Reproductive toxicology.

[65]  Artur Cavaco-Paulo,et al.  Cutinase—A new tool for biomodification of synthetic fibers , 2005 .

[66]  B. Mattiasson,et al.  Enzymatic catalysis in microemulsions: Enzyme reuse and product recovery , 1990, Biotechnology and bioengineering.

[67]  Ofir Degani,et al.  Potential use of cutinase in enzymatic scouring of cotton fiber cuticle , 2002, Applied biochemistry and biotechnology.

[68]  C. Soares,et al.  Protein structure and dynamics in nonaqueous solvents: insights from molecular dynamics simulation studies. , 2003, Biophysical journal.

[69]  Geoffrey Hills,et al.  Industrial use of lipases to produce fatty acid esters , 2003 .

[70]  Kurt Faber,et al.  Biotransformations in Organic Chemistry , 1992 .

[71]  S. Moon,et al.  Biodegradation and detoxification of organophosphate insecticide, malathion by Fusarium oxysporum f. sp. pisi cutinase. , 2005, Chemosphere.

[72]  J. Breccia,et al.  The search for a peptide ligand targeting the lipolytic enzyme cutinase , 2003 .

[73]  F. Kolisis,et al.  Enantiomeric selectivity of a lipase from Penicillium simplicissimum in the esterification of menthol in microemulsions , 1993, Biotechnology Letters.

[74]  K. Mukherjee Lipase-Catalyzed Reactions for Modification of fats and other Lipids , 1990 .

[75]  J. C. Santos,et al.  Modificação de óleos e gorduras por biotransformação , 2004 .

[76]  J. Cabral,et al.  Application of factorial design to the study of transesterification reactions using cutinase in AOT-reversed micelles , 1997 .

[77]  J. Cabral,et al.  Enantioselective properties of Fusarium solani pisi cutinase on transesterification of acyclic diols : activity and stability evaluation , 2001 .