De l'identification de structure de réseaux bayésiens à la reconnaissance de formes à partir d'informations complètes ou incomplètes. (Bayesian Network Identification from Complete or Incomplete Datasets)

Durant ces travaux de these, une comparaison empirique de differentes techniques d'apprentissage de structure de reseaux bayesiens a ete effectuee, car meme s'il peut en exister tres ponctuellement, il n'existe pas de comparaisons plus globales de ces algorithmes. De multiples phases de tests nous ont permis d'identifier quelles methodes souffraient de difficultes d'initialisation et nous avons propose une technique pour les resoudre. Nous avons ensuite adapte differentes methodes d'apprentissage de structure aux bases de donnees incompletes et avons notamment introduit une technique pour apprendre efficacement une structure arborescente. Cette methode est ensuite adaptee a la problematique plus specifique de la classification et permet d'apprendre efficacement et en toute generalite un classifieur de Bayes Naif augmente. Un formalisme original permettant de generer des bases de donnees incompletes ayant des donnees manquantes verifiant les hypotheses MCAR ou MAR est egalement introduit. De nombreuses bases synthetiques ou reelles ont alors ete utilisees pour tester ces methodes d'apprentissage de structure a partir de bases incompletes.

[1]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1999, Innovations in Bayesian Networks.

[2]  Paola Sebastiani,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. Robust Learning with Missing Data , 2022 .

[3]  Andrew Sears,et al.  Applying the Naïve Bayes Classifier to Assist Users in Detecting Speech Recognition Errors , 2005, Proceedings of the 38th Annual Hawaii International Conference on System Sciences.

[4]  C. Cotta On the Learning of Bayesian Network Graph Structures via Evolutionary Programming , 2004 .

[5]  Stuart J. Russell,et al.  Dynamic bayesian networks: representation, inference and learning , 2002 .

[6]  Judea Pearl,et al.  GRAPHOIDS: A Graph-based logic for reasoning about relevance relations , 1985 .

[7]  Fabio Gagliardi Cozman,et al.  Adaptive Online Learning of Bayesian Network Parameters , 2001 .

[8]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[9]  H. Akaike Statistical predictor identification , 1970 .

[10]  David Heckerman,et al.  Knowledge Representation and Inference in Similarity Networks and Bayesian Multinets , 1996, Artif. Intell..

[11]  Nicu Sebe,et al.  Emotion recognition using a Cauchy Naive Bayes classifier , 2002, Object recognition supported by user interaction for service robots.

[12]  C. V. Ramamoorthy,et al.  On the Automated Generation of Program Test Data , 1976, IEEE Transactions on Software Engineering.

[13]  Paul Humphreys,et al.  Why Propensities Cannot Be Probabilities , 1985, Philosophical Papers.

[14]  Andrew W. Moore,et al.  Optimal Reinsertion: A New Search Operator for Accelerated and More Accurate Bayesian Network Structure Learning , 2003, ICML.

[15]  Remco R. Bouckaert,et al.  Probalistic Network Construction Using the Minimum Description Length Principle , 1993, ECSQARU.

[16]  Multi-Agent Causal Models: Inference and Learning , 2005 .

[17]  Kristian G. Olesen,et al.  HUGIN - A Shell for Building Bayesian Belief Universes for Expert Systems , 1989, IJCAI.

[18]  A. Dembo,et al.  Parameter estimation of partially observed continuous time stochastic processes via the EM algorithm , 1992 .

[19]  Marek J. Druzdzel,et al.  A Hybrid Anytime Algorithm for the Construction of Causal Models From Sparse Data , 1999, UAI.

[20]  Kevin P. Murphy,et al.  Space-Efficient Inference in Dynamic Probabilistic Networks , 1997, IJCAI.

[21]  Ross D. Shachter,et al.  Simulation Approaches to General Probabilistic Inference on Belief Networks , 2013, UAI.

[22]  Richard S. Johannes,et al.  Using the ADAP Learning Algorithm to Forecast the Onset of Diabetes Mellitus , 1988 .

[23]  Yoram Singer,et al.  The Hierarchical Hidden Markov Model: Analysis and Applications , 1998, Machine Learning.

[24]  Jian Cheng,et al.  AIS-BN: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks , 2000, J. Artif. Intell. Res..

[25]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[26]  Bogdan Korel,et al.  Automated Software Test Data Generation , 1990, IEEE Trans. Software Eng..

[27]  N. Wermuth,et al.  On Substantive Research Hypotheses, Conditional Independence Graphs and Graphical Chain Models , 1990 .

[28]  Steffen L. Lauritzen,et al.  Bayesian updating in causal probabilistic networks by local computations , 1990 .

[29]  A. Jefferson Offutt,et al.  Constraint-Based Automatic Test Data Generation , 1991, IEEE Trans. Software Eng..

[30]  J. Movellan Tutorial on Hidden Markov Models , 2006 .

[31]  Franz Pernkopf,et al.  Discriminative versus generative parameter and structure learning of Bayesian network classifiers , 2005, ICML.

[32]  Philippe Leray,et al.  An integral approach to causal inference with latent variables , 2007 .

[33]  Philippe Leray,et al.  BAYESIAN NETWORK STRUCTURAL LEARNING AND INCOMPLETE DATA , 2005 .

[34]  B. Skyrms Causal necessity: A pragmatic investigation of the necessity of laws , 1980 .

[35]  Philippe Leray,et al.  BNT STRUCTURE LEARNING PACKAGE : Documentation and Experiments , 2004 .

[36]  Bernard Manderick,et al.  Identification of Causal Effects in Multi-Agent Causal Models , 2005, Artificial Intelligence and Applications.

[37]  Kathryn B. Laskey First-order Bayesian logic , 2005 .

[38]  C. Meek,et al.  Graphical models: selecting causal and statistical models , 1997 .

[39]  Paola Sebastiani,et al.  Profiling your customers using Bayesian networks , 2000, SKDD.

[40]  Nicu Sebe,et al.  Semisupervised learning of classifiers: theory, algorithms, and their application to human-computer interaction , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  S. Wright The Method of Path Coefficients , 1934 .

[42]  Graham K. Rand,et al.  Quantitative Applications in the Social Sciences , 1983 .

[43]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[44]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[45]  Peter C. Cheeseman,et al.  Bayesian Classification (AutoClass): Theory and Results , 1996, Advances in Knowledge Discovery and Data Mining.

[46]  Ronald A. Howard,et al.  Influence Diagrams , 2005, Decis. Anal..

[47]  Ulises Cortés,et al.  Learning Causal Networks from Data: A Survey and a New Algorithm for Recovering Possibilistic Causal Networks , 1997, AI Commun..

[48]  Uue Kjjrull Approximation of Bayesian Networks through Edge Removals D Approximation of Bayesian Networks through Edge Removals , 1993 .

[49]  David Poole,et al.  Average-Case Analysis of a Search Algorithm for Estimating Prior and Posterior Probabilities in Bayesian Networks with Extreme Probabilities , 1993, IJCAI.

[50]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[51]  Kevin B. Korb,et al.  Introduction: Machine Learning as Philosophy of Science , 2004, Minds and Machines.

[52]  Henry Tirri,et al.  B-Course: A Web-Based Tool for Bayesian and Causal Data Analysis , 2002, Int. J. Artif. Intell. Tools.

[53]  Jeremy York,et al.  Use of the Gibbs Sampler in Expert Systems , 1992, Artif. Intell..

[54]  Marek J. Druzdzel,et al.  Robust Independence Testing for Constraint-Based Learning of Causal Structure , 2002, UAI.

[55]  Louis Wehenkel,et al.  On the Construction of the Inclusion Boundary Neighbourhood for Markov Equivalence Classes of Bayesian Network Structures , 2002, UAI.

[56]  Judea Pearl,et al.  Fusion, Propagation, and Structuring in Belief Networks , 1986, Artif. Intell..

[57]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[58]  Fabio Gagliardi Cozman,et al.  Generating Random Bayesian Networks with Constraints on Induced Width , 2004, ECAI.

[59]  Christian Borgelt,et al.  Graphical models - methods for data analysis and mining , 2002 .

[60]  Jose Miguel Puerta,et al.  Ant colony optimization for learning Bayesian networks , 2002, Int. J. Approx. Reason..

[61]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[62]  Nir Friedman,et al.  Being Bayesian about Network Structure , 2000, UAI.

[63]  Yang Xiang,et al.  PROBABILISTIC REASONING IN MULTIAGENT SYSTEMS: A GRAPHICAL MODELS APPROACH, by Yang Xiang, Cambridge University Press, Cambridge, 2002, xii + 294 pp., ISBN 0-521-81308-5 (Hardback, £45.00). , 2002, Robotica.

[64]  Hélène Waeselynck,et al.  STATEMATE applied to statistical software testing , 1993, ISSTA '93.

[65]  Ross D. Shachter Intelligent Probabilistic Inference , 1985, UAI.

[66]  C. Robert The Bayesian choice : a decision-theoretic motivation , 1996 .

[67]  Ross D. Shachter,et al.  Symbolic Probabilistic Inference in Belief Networks , 1990, AAAI.

[68]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[69]  Thomas D. Nielsen,et al.  Adapting Bayes Network Structures to Non-stationary Domains , 2006, Probabilistic Graphical Models.

[70]  G. Celeux,et al.  Assessing a Mixture Model for Clustering with the Integrated Classification Likelihood , 1998 .

[71]  Andrew W. Moore,et al.  Mix-nets: Factored Mixtures of Gaussians in Bayesian Networks with Mixed Continuous And Discrete Variables , 2000, UAI.

[72]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[73]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[74]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[75]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[76]  Philippe Leray Apprentissage et diagnostic de systemes complexes : reseaux de neurones et reseaux bayesiens. application a la gestion en temps reel du trafic telephonique francais , 1998 .

[77]  Michael I. Jordan,et al.  Discriminative training of hidden Markov models for multiple pitch tracking [speech processing examples] , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[78]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[79]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[80]  Jacques Labiche,et al.  From continuous to discrete variables for Bayesian network classifiers , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[81]  William H. Hsu,et al.  An ACO Algorithm for the Most Probable Explanation Problem , 2004, Australian Conference on Artificial Intelligence.

[82]  Olivier François,et al.  Learning the Tree Augmented Naive Bayes Classifier from incomplete datasets , 2006, Probabilistic Graphical Models.

[83]  Daphne Koller,et al.  Expectation Maximization and Complex Duration Distributions for Continuous Time Bayesian Networks , 2005, UAI.

[84]  Claus Dethlefsen,et al.  deal: A Package for Learning Bayesian Networks , 2003 .

[85]  Judea Pearl,et al.  Convince: A Conversational Inference Consolidation Engine , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[86]  Judea Pearl,et al.  A Theory of Inferred Causation , 1991, KR.

[87]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[88]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[89]  Sebastian Thrun,et al.  The MONK''s Problems-A Performance Comparison of Different Learning Algorithms, CMU-CS-91-197, Sch , 1991 .

[90]  Fabien De Marchi,et al.  Apprentissage de la structure des réseaux bayésiens à partir des motifs fréquents corrélés : application à l'identification des facteurs environnementaux du cancer du Nasopharynx , 2006, EGC.

[91]  A. Scott,et al.  Clustering methods based on likelihood ratio criteria. , 1971 .

[92]  Keiji Kanazawa,et al.  A model for reasoning about persistence and causation , 1989 .

[93]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[94]  Olivier François,et al.  Apprentissage de structure des réseaux bayésiens et données incomplètes , 2005, EGC.

[95]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[96]  Daphne Koller,et al.  Expectation Propagation for Continuous Time Bayesian Networks , 2005, UAI.

[97]  Lakhmi C. Jain,et al.  Introduction to Bayesian Networks , 2008 .

[98]  N. Cartwright Causal Laws and Effective Strategies , 1979 .

[99]  Boaz Lerner,et al.  Recursive Autonomy Identification for Bayesian Network Structure Learning , 2005, AISTATS.

[100]  Georgios Paliouras,et al.  Learning to Filter Spam E-Mail: A Comparison of a Naive Bayesian and a Memory-Based Approach , 2000, ArXiv.

[101]  Kevin Murphy,et al.  Active Learning of Causal Bayes Net Structure , 2006 .

[102]  Matthew J. Beal,et al.  The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures , 2003 .

[103]  Robert Castelo,et al.  Towards an inclusion driven learning of Bayesian Networks , 2002 .

[104]  P. Spirtes,et al.  Ancestral graph Markov models , 2002 .

[105]  Pedro M. Domingos Why Does Bagging Work? A Bayesian Account and its Implications , 1997, KDD.

[106]  Christopher Read Hitchcock,et al.  A generalized probabilistic theory of causal relevance , 1993, Synthese.

[107]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[108]  David J. Spiegelhalter,et al.  Sequential updating of conditional probabilities on directed graphical structures , 1990, Networks.

[109]  L. Williams,et al.  Contents , 2020, Ophthalmology (Rochester, Minn.).

[110]  Philippe Leray,et al.  Étude Comparative d’Algorithmes d’Apprentissage de Structure dans les Réseaux Bayésiens , 2004 .

[111]  Max Henrion,et al.  An Introduction to Algorithms for Inference in Belief Nets , 1989, UAI.

[112]  Luis M. de Campos,et al.  A hybrid methodology for learning belief networks: BENEDICT , 2001, Int. J. Approx. Reason..

[113]  David J. C. MacKay,et al.  Choice of Basis for Laplace Approximation , 1998, Machine Learning.

[114]  Wray L. Buntine Theory Refinement on Bayesian Networks , 1991, UAI.

[115]  Max Henrion,et al.  Propagating uncertainty in bayesian networks by probabilistic logic sampling , 1986, UAI.

[116]  Richard A. Andersen,et al.  Latent variable models for neural data analysis , 1999 .

[117]  G. Celeux,et al.  A Classification EM algorithm for clustering and two stochastic versions , 1992 .

[118]  Eric Bauer,et al.  Update Rules for Parameter Estimation in Bayesian Networks , 1997, UAI.

[119]  Daphne Koller,et al.  Ordering-Based Search: A Simple and Effective Algorithm for Learning Bayesian Networks , 2005, UAI.

[120]  Linda Smail,et al.  Algorithmique pour les Réseaux Bayésiens et leurs extensions , 2004 .

[121]  James H. Cross,et al.  A Rule-Based Software Test Data Generator , 1991, IEEE Trans. Knowl. Data Eng..

[122]  David A. Bell,et al.  Learning Bayesian networks from data: An information-theory based approach , 2002, Artif. Intell..

[123]  Wai Lam,et al.  Using Causal Information and Local Measures to Learn Bayesian Networks , 1993, UAI.

[124]  Nir Friedman,et al.  Learning Belief Networks in the Presence of Missing Values and Hidden Variables , 1997, ICML.

[125]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[126]  Rina Dechter,et al.  Bucket Elimination: a Unifying Framework for Structure-driven Inference , 2008 .

[127]  Serafín Moral,et al.  Mixtures of Truncated Exponentials in Hybrid Bayesian Networks , 2001, ECSQARU.

[128]  R. W. Robinson Counting unlabeled acyclic digraphs , 1977 .

[129]  Wei-Yin Loh,et al.  A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms , 2000, Machine Learning.

[130]  Julien Diard,et al.  La carte bayésienne : un modèle probabiliste hiérarchique pour la navigation en robotique mobile. (The Bayesian map - A hierarchical probabilistic model for mobile robot navigation) , 2003 .

[131]  Judea Pearl,et al.  Equivalence and Synthesis of Causal Models , 1990, UAI.

[132]  Bogdan Korel,et al.  The chaining approach for software test data generation , 1996, TSEM.

[133]  Adnan Darwiche,et al.  A differential approach to inference in Bayesian networks , 2000, JACM.

[134]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[135]  Russell Greiner,et al.  Learning Bayesian Belief Network Classifiers: Algorithms and System , 2001, Canadian Conference on AI.

[136]  GreinerRussell,et al.  Structural Extension to Logistic Regression , 2005 .

[137]  D. Geiger Graphoids: a qualitative framework for probabilistic inference , 1990 .

[138]  Judea Pearl,et al.  Causal networks: semantics and expressiveness , 2013, UAI.

[139]  M. Tarsi,et al.  A simple algorithm to construct a consistent extension of a partially oriented graph , 1992 .

[140]  Hubert Cardot,et al.  Two evolutionary methods for learning Bayesian network structures , 2006, 2006 International Conference on Computational Intelligence and Security.

[141]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[142]  Bruce D'Ambrosio,et al.  Real-Time Inference with Large-Scale Temporal Bayes Nets , 2002, UAI.

[143]  N. Wermuth,et al.  Graphical Models for Associations between Variables, some of which are Qualitative and some Quantitative , 1989 .

[144]  Olivier François,et al.  Réseaux bayésiens pour la classification Méthodologie et illustration dans le cadre du diagnostic médical , 2004, Rev. d'Intelligence Artif..

[145]  Gregory M. Provan,et al.  Query DAGs: A practical paradigm for implementing belief-network inference , 1996, UAI.

[146]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[147]  Zhaoyu Li,et al.  Efficient inference in Bayes networks as a combinatorial optimization problem , 1994, Int. J. Approx. Reason..

[148]  Pedro Larrañaga,et al.  Learning Recursive Bayesian Multinets for Data Clustering by Means of Constructive Induction , 2002, Machine Learning.

[149]  Pedro Larrañaga,et al.  Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[150]  D. Margaritis Learning Bayesian Network Model Structure from Data , 2003 .

[151]  Carlos Cotta,et al.  A Primer on the Evolution of Equivalence Classes of Bayesian-Network Structures , 2004, PPSN.

[152]  P. Sebastiani,et al.  Bayesian Selection of Decomposable Models With Incomplete Data , 2001 .

[153]  Jin Tian,et al.  A general identification condition for causal effects , 2002, AAAI/IAAI.

[154]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[155]  Gregory F. Cooper,et al.  A randomized approximation algorithm for probabilistic inference on bayesian belief networks , 1990, Networks.

[156]  Lukasz A. Kurgan,et al.  Knowledge discovery approach to automated cardiac SPECT diagnosis , 2001, Artif. Intell. Medicine.

[157]  Zheng Yun,et al.  Improved MDL Score for Learning of Bayesian Networks , 2004 .

[158]  Bogdan Korel,et al.  Assertion-oriented automated test data generation , 1996, Proceedings of IEEE 18th International Conference on Software Engineering.

[159]  Craig Boutilier,et al.  Decision-Theoretic Planning: Structural Assumptions and Computational Leverage , 1999, J. Artif. Intell. Res..

[160]  David Madigan,et al.  An Alternative Markov Property for Chain Graphs , 1996, UAI.

[161]  P. Dangerfield Logic , 1996, Aristotle and the Stoics.

[162]  M. Frydenberg The chain graph Markov property , 1990 .

[163]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[164]  David Bellot Fusion de données avec des réseaux bayésiens pour la modélisation des systèmes dynamiques et son application en télémédecine , 2002 .

[165]  Jean-François Chauvard Liste des figures , 2005 .

[166]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[167]  Peter Spirtes,et al.  A Characterization of Markov Equivalence Classes for Ancestral Graphical Models , 2005 .

[168]  Moninder Singh,et al.  An Algorithm for the Construction of Bayesian Network Structures from Data , 1993, UAI.

[169]  David J. Slate,et al.  Letter Recognition Using Holland-Style Adaptive Classifiers , 1991, Machine Learning.

[170]  Prakash P. Shenoy,et al.  Approximating probability density functions in hybrid Bayesian networks with mixtures of truncated exponentials , 2006, Stat. Comput..

[171]  P. Bessière,et al.  A unifying framework for exact and approximate Bayesian inference , 2006 .

[172]  D J Spiegelhalter,et al.  Probabilistic prediction in patient management and clinical trials. , 1986, Statistics in medicine.

[173]  Dan Geiger,et al.  An Entropy-based Learning Algorithm of Bayesian Conditional Trees , 1992, UAI.

[174]  Bernard Manderick,et al.  Learning Causal Bayesian Networks from Observations and Experiments: A Decision Theoretic Approach , 2006, MDAI.

[175]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[176]  Bruno Lecoutre,et al.  Failure to Construct and Transfer Correct Representations across Probability Problems , 2004, Psychological reports.

[177]  Ross D. Shachter Bayes-Ball: The Rational Pastime (for Determining Irrelevance and Requisite Information in Belief Networks and Influence Diagrams) , 1998, UAI.

[178]  Thomas S. Richardson,et al.  Causal Inference in the Presence of Latent Variables and Selection Bias , 1995, UAI.

[179]  Alex Bateman,et al.  An introduction to hidden Markov models. , 2007, Current protocols in bioinformatics.

[180]  Bin Shen,et al.  Structural Extension to Logistic Regression: Discriminative Parameter Learning of Belief Net Classifiers , 2002, Machine Learning.

[181]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[182]  R. Shibata Selection of the order of an autoregressive model by Akaike's information criterion , 1976 .

[183]  Rudolf Kruse,et al.  Learning Possibilistic Networks from Data , 1995, AISTATS.

[184]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[185]  David Maxwell Chickering,et al.  Learning Equivalence Classes of Bayesian Network Structures , 1996, UAI.

[186]  Judea Pearl,et al.  Evidential Reasoning Using Stochastic Simulation of Causal Models , 1987, Artif. Intell..

[187]  Michael D. Perlman,et al.  Enumerating Markov Equivalence Classes of Acyclic Digraph Models , 2001, UAI.

[188]  A. Viana Alonso [Logic or chance?]. , 1992, Medicina clinica.

[189]  P. Suppes A Probabilistic Theory Of Causality , 1970 .

[190]  Nevin L. Zhang,et al.  A simple approach to Bayesian network computations , 1994 .

[191]  Eugene Santos,et al.  Comparing Case-Based Bayesian Network and Recursive Bayesian Multi-Net Classifiers , 2004, IC-AI.

[192]  G. C. Wei,et al.  A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .

[193]  Nir Friedman,et al.  Learning Bayesian Network Structure from Massive Datasets: The "Sparse Candidate" Algorithm , 1999, UAI.

[194]  Michael I. Jordan,et al.  Learning with Mixtures of Trees , 2001, J. Mach. Learn. Res..

[195]  Constantin F. Aliferis,et al.  A Comparison of Novel and State-of-the-Art Polynomial Bayesian Network Learning Algorithms , 2005, AAAI.

[196]  Nir Friedman,et al.  The Bayesian Structural EM Algorithm , 1998, UAI.

[197]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[198]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[199]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[200]  Eric Horvitz,et al.  MSBNx: A Component-Centric Toolkit for Modeling and Inference with Bayesian Networks , 2001 .

[201]  H. Jeffreys A Treatise on Probability , 1922, Nature.

[202]  H. Chernoff,et al.  The Use of Maximum Likelihood Estimates in {\chi^2} Tests for Goodness of Fit , 1954 .

[203]  Josep Roure Alcobé,et al.  Incremental methods for Bayesian network structure learning , 2005, AI Commun..

[204]  P. Laplace A Philosophical Essay On Probabilities , 1902 .

[205]  Pierre-Henri Wuillemin,et al.  Object Oriented Bayesian Networks A Framework for Topdown Specification of Large Bayesian Networks a , 2000 .

[206]  Nevin Lianwen Zhang,et al.  Hierarchical latent class models for cluster analysis , 2002, J. Mach. Learn. Res..

[207]  Roy P. Pargas,et al.  Test-Data Generation Using Genetic Algorithms , 1999, Softw. Test. Verification Reliab..

[208]  Mark J. F. Gales,et al.  Semi-tied covariance matrices for hidden Markov models , 1999, IEEE Trans. Speech Audio Process..

[209]  Prakash P. Shenoy,et al.  Inference in hybrid Bayesian networks with mixtures of truncated exponentials , 2006, Int. J. Approx. Reason..

[210]  Benjamin B. Perry,et al.  BN-tools: a software toolkit for experimentation in BBNs , 2002, AAAI/IAAI.

[211]  Stuart J. Russell,et al.  Stochastic simulation algorithms for dynamic probabilistic networks , 1995, UAI.

[212]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[213]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[214]  K. Pearson The Grammar of Science , 1892, Nature.

[215]  Liviu Badea Inferring large gene networks from microarray data: a constraint-based approach , 2003 .

[216]  David Maxwell Chickering,et al.  Optimal Structure Identification With Greedy Search , 2002, J. Mach. Learn. Res..

[217]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[218]  Constantin F. Aliferis,et al.  The max-min hill-climbing Bayesian network structure learning algorithm , 2006, Machine Learning.

[219]  C. Robert Kenley,et al.  Gaussian influence diagrams , 1989 .

[220]  Anna Goldenberg,et al.  Tractable learning of large Bayes net structures from sparse data , 2004, ICML.

[221]  Jiji Zhang,et al.  Causal Inference and Reasoning in Causally Insu-cient Systems , 2006 .

[222]  Kwong-Sak Leung,et al.  Data mining of Bayesian networks using cooperative coevolution , 2004, Decis. Support Syst..

[223]  Milan Studený,et al.  On characterizing Inclusion of Bayesian Networks , 2001, UAI.

[224]  Gerhardt von Bonin,et al.  Cybernetics or control and communication in the animal and the machine: Norbert wiener, 1948. 194 pp. New York: John Wiley & Sons, Inc. Paris: Hermann et cie , 1949 .

[225]  William H. Hsu,et al.  A Survey of Algorithms for Real-Time Bayesian Network Inference , 2002 .