Convergence of Wachspress coordinates: from polygons to curved domains

Given a smooth, strictly convex planar domain, we investigate point-wise convergence of the sequence of Wachspress coordinates defined over finer and finer inscribed polygonal approximations of the domain. Based on a relation between the discrete Wachspress case and the limit smooth case given by the Wachspress kernel defined by Warren et al., we show that the corresponding sequences of Wachspress interpolants and mappings converge as 𝓞(h2) for a sampling step size h of the boundary curve of the domain as h → 0. Several examples are shown to numerically validate the results and to visualise the behaviour of discrete interpolants and mappings as they converge to their smooth counterparts. Empirically, the same convergence order is observed also for mean value coordinates. Moreover, our numerical tests suggest that the convergence of interpolants and mappings is uniform both in the Wachspress and mean value cases.

[1]  Kai Hormann,et al.  A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..

[2]  Mirela Ben-Chen,et al.  Complex Barycentric Coordinates with Applications to Planar Shape Deformation , 2009, Comput. Graph. Forum.

[3]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[4]  Mark Meyer,et al.  Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.

[5]  Mathieu Desbrun,et al.  Barycentric coordinates for convex sets , 2007, Adv. Comput. Math..

[6]  Charles Hansen,et al.  The Visualization Handbook , 2011 .

[7]  Jirí Kosinka,et al.  On the injectivity of Wachspress and mean value mappings between convex polygons , 2010, Adv. Comput. Math..

[8]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[9]  Christopher Dyken,et al.  Transfinite mean value interpolation , 2009, Comput. Aided Geom. Des..

[10]  W. Ames Mathematics in Science and Engineering , 1999 .

[11]  Teseo Schneider,et al.  Bijective Composite Mean Value Mappings , 2013, SGP '13.

[12]  Jirí Kosinka,et al.  Barycentric interpolation and mappings on smooth convex domains , 2010, SPM '10.

[13]  Shi-Min Hu,et al.  Cubic mean value coordinates , 2013, ACM Trans. Graph..

[14]  DeroseTony,et al.  Harmonic coordinates for character articulation , 2007 .

[15]  Kai Hormann,et al.  Mean value coordinates for arbitrary planar polygons , 2006, TOGS.

[16]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[17]  J. Warren,et al.  Mean value coordinates for closed triangular meshes , 2005, SIGGRAPH 2005.

[18]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.