The Fermi–Pasta–Ulam ‘numerical experiment’: history and pedagogical perspectives
暂无分享,去创建一个
[1] Joseph Ford,et al. Equipartition of Energy for Nonlinear Systems , 1961 .
[2] S. Croucher,et al. Surveys , 1965, Understanding Communication Research Methods.
[3] M. Toda. Vibration of a Chain with Nonlinear Interaction , 1967 .
[4] H. Poincaré,et al. Erratum zu: Etude des surfaces asymptotiques , 1890 .
[5] Physics Letters , 1962, Nature.
[6] S. Wolfram. Statistical mechanics of cellular automata , 1983 .
[7] Thomas P. Weissert,et al. The genesis of simulation in dynamics: Pursuing the Fermi‐Pasta‐Ulam problem Lattice‐gas cellular automata: Simple models of complex hydrodynamics , 1998 .
[8] N. Zabusky,et al. Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .
[9] N. Sait̂o,et al. Computer Studies of Ergodicity in Coupled Oscillators with Anharmonic Interaction , 1967 .
[10] N. Sait̂o,et al. Long-Time Behavior of the Vibration in One-Dimensional Harmonic Lattice , 1967 .
[11] A. Sirota,et al. NONCOMPACT SEMISIMPLE LIE GROUPS , 1963 .
[12] Norman J. Zabusky,et al. Dynamics of nonlinear lattices I. Localized optical excitations, acoustic radiation, and strong nonlinear behavior , 1967 .
[13] D. Korteweg,et al. XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .
[14] David K Campbell,et al. Introduction: The Fermi-Pasta-Ulam problem--the first fifty years. , 2005, Chaos.
[15] K. Kaneko. Overview of coupled map lattices. , 1992, Chaos.
[16] Michel Peyrard,et al. Physics of Solitons , 2006 .
[17] Morikazu Toda,et al. Theory Of Nonlinear Lattices , 1981 .
[18] C. -. Lin,et al. When is a one-dimensional lattice small? , 1999 .
[19] Thomas P. Weissert,et al. The Genesis of Simulation in Dynamics: Pursuing the Fermi-Pasta-Ulam Problem , 1999 .
[20] S. Ulam,et al. Adventures of a Mathematician , 2019, Mathematics: People · Problems · Results.
[21] D. Sholl. Modal coupling in one-dimensional anharmonic lattices , 1990 .
[22] Joseph Ford,et al. The Fermi-Pasta-Ulam problem: Paradox turns discovery , 1992 .
[23] A. Vulpiani,et al. Relaxation to different stationary states in the Fermi-Pasta-Ulam model , 1983 .
[24] V. Arnold. SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .
[25] L. Maximon,et al. Recurrence Time of a Dynamical System , 1958 .