On Overlays and Minimization Diagrams

The overlay of 2≤m≤d minimization diagrams of n surfaces in ℝd is isomorphic to a substructure of a suitably constructed minimization diagram of mn surfaces in ℝd+m−1. This elementary observation leads to a new bound on the complexity of the overlay of minimization diagrams of collections of d-variate semi-algebraic surfaces, a tight bound on the complexity of the overlay of minimization diagrams of collections of hyperplanes, and faster algorithms for constructing such overlays. Further algorithmic implications are discussed.

[1]  Micha Sharir,et al.  Exact and Approximation Algorithms for Minimum-Width Cylindrical Shells , 2000, SODA '00.

[2]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[3]  G. Ziegler Lectures on Polytopes , 1994 .

[4]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[5]  Micha Sharir,et al.  The Partition Technique for Overlays of Envelopes , 2003, SIAM J. Comput..

[6]  Micha Sharir,et al.  On the ICP algorithm , 2006, SCG '06.

[7]  Herbert Edelsbrunner,et al.  The upper envelope of piecewise linear functions: Tight bounds on the number of faces , 1989, Discret. Comput. Geom..

[8]  Timothy M. Chan Approximating the Diameter, Width, Smallest Enclosing Cylinder, and Minimum-Width Annulus , 2002, Int. J. Comput. Geom. Appl..

[9]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[10]  Bernard Chazelle,et al.  An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..

[11]  Micha Sharir,et al.  Computing envelopes in four dimensions with applications , 1994, SCG '94.

[12]  Micha Sharir,et al.  Arrangements and Their Applications , 2000, Handbook of Computational Geometry.

[13]  Kenneth L. Clarkson,et al.  A Randomized Algorithm for Closest-Point Queries , 1988, SIAM J. Comput..

[14]  Leonidas J. Guibas,et al.  Vertical decomposition of arrangements of hyperplanes in four dimensions , 1993, Discret. Comput. Geom..

[15]  Micha Sharir,et al.  The overlay of lower envelopes and its applications , 1996, Discret. Comput. Geom..

[16]  Vladlen Koltun,et al.  Matching Polyhedral Terrains Using Overlays of Envelopes , 2004, Algorithmica.

[17]  Micha Sharir Almost tight upper bounds for lower envelopes in higher dimensions , 1994, Discret. Comput. Geom..

[18]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  P. Agarwal,et al.  Approximation Algorithms for Minimum-Width Annuli and Shells , 2000 .

[20]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[21]  Micha Sharir,et al.  Approximation and exact algorithms for minimum-width annuli and shells , 1999, SCG '99.

[22]  Michael T. Goodrich,et al.  Efficient approximation and optimization algorithms for computational metrology , 1997, SODA '97.