Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers.

[1]  J. Lucy,et al.  An osmotic model for the fusion of biological membranes , 1986, FEBS letters.

[2]  F. Szoka,et al.  Destabilization of phosphatidylethanolamine liposomes at the hexagonal phase transition temperature. , 1986, Biochemistry.

[3]  M. Kozlov,et al.  [Membrane fusion: local interactions and structural rearrangements]. , 1986, Doklady Akademii nauk SSSR.

[4]  S. Nir,et al.  Ca2+-induced fusion of phosphatidylserine vesicles: mass action kinetic analysis of membrane lipid mixing and aqueous contents mixing. , 1985, Biochimica et biophysica acta.

[5]  D. Roos,et al.  Biochemical studies on cell fusion. I. Lipid composition of fusion- resistant cells , 1985, The Journal of cell biology.

[6]  D. Roos,et al.  Biochemical studies on cell fusion. II. Control of fusion response by lipid alteration , 1985, The Journal of cell biology.

[7]  J. Bockaert,et al.  Tissue expression and phylogenetic appearance of the β and γ subunits of GTP binding proteins , 1985 .

[8]  S. Nir,et al.  Kinetics of Ca2+-induced fusion of cardiolipin-phosphatidylcholine vesicles: correlation between vesicle aggregation, bilayer destabilization, and fusion. , 1985, Biochemistry.

[9]  J. Israelachvili,et al.  Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. , 1985, Biochemistry.

[10]  A. Brickner,et al.  Functional domains of the alpha subunit of the eighth component of human complement: identification and characterization of a distinct binding site for the gamma chain. , 1985, Biochemistry.

[11]  F. Szoka,et al.  H+- and Ca2+-induced fusion and destabilization of liposomes. , 1985, Biochemistry.

[12]  D. Friend,et al.  Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes. , 1985, Biochemistry.

[13]  T. Reese,et al.  Dynamic morphology of calcium-induced interactions between phosphatidylserine vesicles. , 1985, Biophysical journal.

[14]  M. Kozlov,et al.  The shape of lipid molecules and monolayer membrane fusion , 1985 .

[15]  B. Derjaguin,et al.  Inclusion of structural forces in the theory of stability of colloids and films , 1985 .

[16]  S. Gruner,et al.  Lipid polymorphism: the molecular basis of nonbilayer phases. , 1985, Annual review of biophysics and biophysical chemistry.

[17]  D. Papahadjopoulos,et al.  Modulation of membrane fusion by membrane fluidity: temperature dependence of divalent cation induced fusion of phosphatidylserine vesicles. , 1985, Biochemistry.

[18]  R. Horn Direct measurement of the force between two lipid bilayers and observation of their fusion , 1984 .

[19]  G. Brewer,et al.  Role of gangliosides in adhesion and conductance changes in large spherical model membranes. , 1984, Biochimica et biophysica acta.

[20]  M. Kozlov,et al.  Fission of the bilayer lipid tube , 1984 .

[21]  J. Young,et al.  Protein-mediated intermembrane contact facilitates fusion of lipid vesicles with planar bilayers. , 1984, Biochimica et biophysica acta.

[22]  V. Parsegian,et al.  Physical force considerations in model and biological membranes. , 1984, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire.

[23]  Osmotic control of bilayer fusion. , 1984, Biophysical journal.

[24]  J. Israelachvili,et al.  Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions , 1984 .

[25]  L. Chernomordik,et al.  Solvent-free bilayers from squalene solutions of phospholipids , 1984 .

[26]  D. Stein,et al.  A thermodynamic model of the lamellar to inverse hexagonal phase transition of lipid membrane-water systems , 1984 .

[27]  Viriasov Sn,et al.  [Electro-osmotic processes in the region of bilayer lipid membrane contact]. , 1984 .

[28]  M. Akabas,et al.  Separation of the osmotically driven fusion event from vesicle-planar membrane attachment in a model system for exocytosis , 1984, The Journal of cell biology.

[29]  F S Cohen,et al.  Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes , 1984, The Journal of cell biology.

[30]  D. Dimitrov,et al.  Influence of permeability on the rate of mutual approach of membranes , 1984 .

[31]  L. Chernomordik,et al.  Breakdown of lipid bilayer membranes in an electric field , 1983 .

[32]  Kozlov Mm,et al.  Possible mechanism of membrane fusion , 1983 .

[33]  S. Nir,et al.  Aggregation and fusion of phospholipid vesicles , 1983 .

[34]  S. Marčelja,et al.  Spatially varying polarization in water. A model for the electric double layer and the hydration force , 1983 .

[35]  Melikian Gb,et al.  [Ca2+-induced fusion of bilayer lipid membranes not containing a solvent]. , 1983 .

[36]  J. G. Edwards The biochemistry of cell-adhesion , 1983 .

[37]  L. Chernomordik,et al.  [Electrostimulated fusion and fission of bilayer lipid membranes]. , 1983, Doklady Akademii nauk SSSR.

[38]  D. Friend,et al.  Fusion of phospholipid vesicles arrested by quick-freezing. The question of lipidic particles as intermediates in membrane fusion. , 1982, Biochimica et biophysica acta.

[39]  U. Zimmermann,et al.  Electric field-mediated fusion and related electrical phenomena. , 1982, Biochimica et biophysica acta.

[40]  D. Hoekstra KINETICS OF INTERMIXING OF LIPIDS AND MIXING OF AQUEOUS CONTENTS DURING VESICLE FUSION , 1982 .

[41]  M. Akabas,et al.  Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane. , 1982, Science.

[42]  S. Ohki A mechanism of divalent ion-induced phosphatidylserine membrane fusion. , 1982, Biochimica et biophysica acta.

[43]  Babunashvili In,et al.  Inclusion of erythrocyte membranes into planar lipid bilayers , 1982 .

[44]  P. Cullis,et al.  Stabilization of bilayer structure for unsaturated phosphatidylethanolamines by detergents. , 1982, Biochimica et biophysica acta.

[45]  D. Papahadjopoulos,et al.  Modulation of membrane fusion by calcium-binding proteins. , 1982, Biophysical journal.

[46]  James C. Weaver,et al.  Decreased bilayer stability due to transmembrane potentials , 1981 .

[47]  V. Markin,et al.  Lateral organization of membranes and cell shapes. , 1981, Biophysical journal.

[48]  D. Deamer,et al.  Fusion competence of phosphatidylserine-containing liposomes quantitatively measured by a fluorescence resonance energy transfer assay. , 1981, Archives of biochemistry and biophysics.

[49]  T. Reese,et al.  Beginning of exocytosis captured by rapid-freezing of Limulus amebocytes , 1981, The Journal of cell biology.

[50]  R. Rand Interacting phospholipid bilayers: measured forces and induced structural changes. , 1981, Annual review of biophysics and bioengineering.

[51]  Chizmadzhev IuA,et al.  Interaction of membranes with constant surface charge , 1981 .

[52]  J. Israelachvili The forces between surfaces , 1981 .

[53]  D. Papahadjopoulos,et al.  Studies on the mechanism of membrane fusion: kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents. , 1980, Biochemistry.

[54]  B. de Kruijff,et al.  Cytochrome c specifically induces non-bilayer structures in cardiolipin-containing model membranes. , 1980, Biochimica et biophysica acta.

[55]  M. Wakahara Polyethylene glycol- and lysolecithin-induced cell fusion between follicle cell and very small oocyte in Xenopus laevis. , 1980, Experimental cell research.

[56]  B. Kachar,et al.  Quick freezing vs. chemical fixation: capture and identification of membrane fusion intermediates. , 1980, Cell biology international reports.

[57]  F S Cohen,et al.  Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. I. Discharge of vesicular contents across the planar membrane , 1980, The Journal of general physiology.

[58]  A. Verkleij,et al.  Lipidic intramembranous particles. , 1984, Nature.

[59]  A. Gad,et al.  Calcium-induced fusion of proteoliposomes and protein-free liposomes. Effect of their phosphatidylethanolamine content on the structure of fused vesicles. , 1979, Biochimica et biophysica acta.

[60]  N. Gilula,et al.  Membrane events involved in myoblast fusion , 1979, The Journal of cell biology.

[61]  W. Pangborn,et al.  Studies on the mechanism of membrane fusion: evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin. , 1979, Biochemistry.

[62]  V. F. Pastushenko,et al.  247 - Electric breakdown of bilayer lipid membranes II. Calculation of the membrane lifetime in the steady-state diffusion approximation , 1979 .

[63]  M. R. Tarasevich,et al.  246 - Electric breakdown of bilayer lipid membranes I. The main experimental facts and their qualitative discussion , 1979 .

[64]  P. F. Baker,et al.  Calcium-dependent exocytosis in bovine adrenal medullary cells with leaky plasma membranes , 1978, Nature.

[65]  L. Ginsberg Does Ca2+ cause fusion or lysis of unilamellar lipid vesicles? , 1978, Nature.

[66]  J. Lucy,et al.  Water and calcium ions in cell fusion induced by poly(ethylene glycol) , 1978, FEBS letters.

[67]  S H White,et al.  Formation of "solvent-free" black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. , 1978, Biophysical journal.

[68]  V. Parsegian,et al.  Measurement of repulsive forces between charged phospholipid bilayers. , 1978, Biochemistry.

[69]  R Latorre,et al.  Voltage-dependent capacitance in lipid bilayers made from monolayers. , 1978, Biophysical journal.

[70]  J. Kremer,et al.  Exchange and aggregation in dispersions of dimyristoyl phosphatidylcholine vesicles containing myristic acid. , 1977, Biochimica et biophysica acta.

[71]  B. Ninham,et al.  Theory of self-assembly of lipid bilayers and vesicles. , 1977, Biochimica et biophysica acta.

[72]  R. Rand,et al.  Measurement and modification of forces between lecithin bilayers. , 1977, Biophysical journal.

[73]  K. Jacobson,et al.  Studies on membrane fusion. III. The role of calcium-induced phase changes. , 1977, Biochimica et biophysica acta.

[74]  M. Montal,et al.  Formation of detergent‐free proteolipids from biological membranes: Application to rhodopsin , 1977, FEBS letters.

[75]  Barry W. Ninham,et al.  Role of solvent structure in solution theory , 1977 .

[76]  R. Benz,et al.  Voltage-induce capacitance relaxation of lipid bilayer membranes. Effects of membrane composition. , 1976, Biochimica et biophysica acta.

[77]  G. Feher,et al.  Branched bimolecular lipid membranes. , 1976, Biophysical journal.

[78]  S. Marčelja,et al.  Repulsion of interfaces due to boundary water , 1976 .

[79]  V. Parsegian,et al.  Measurement of forces between lecithin bilayers , 1976, Nature.

[80]  D. Gingell,et al.  Apparent modification of forces between lecithin bilayers. , 1976, Science.

[81]  F. Martin,et al.  Phospholipid exchange between bilayer membrane vesicles. , 1976, Biochemistry.

[82]  J. Cohen,et al.  Interaction of charged lipid vesicles with planar bilayer lipid membranes: detection by antibiotic membrane probes. , 1976, Journal of supramolecular structure.

[83]  D. Pette,et al.  Influence of the ionophore A 23 187 on myogenic cell fusion , 1975, FEBS letters.

[84]  C Sauterey,et al.  Osmotic pressure induced pores in phospholipid vesicles. , 1975, Biochemistry.

[85]  H. Ohshima Diffuse double layer interaction between two parallel plates with constant surface charge density in an electrolyte solution III. Potential energy of double layer interaction , 1975 .

[86]  E. Neher Asymmetric membranes resulting from the fusion of two black lipid bilayers. , 1974, Biochimica et biophysica acta.

[87]  S. Morris,et al.  Structural changes in chromaffin granules induced by divalent cations. , 1974, Biochimica et biophysica acta.

[88]  H. Ohshima Diffuse double layer interaction between two parallel plates with constant surface charge density in an electrolyte solution I. The interaction between similar plates , 1974 .

[89]  H. Ti Tien,et al.  Bilayer lipid membranes (BLM) : theory and practice , 1974 .

[90]  Liberman Ea,et al.  Modelling changes in cell adhesion permeability on bimolecular phospholipid membranes , 1972 .

[91]  Chaĭlakhian Lm,et al.  The structure of the adherent region of two spherical bimolecular phospholipid membranes modified by oleic acid , 1972 .

[92]  S B Hladky,et al.  Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems , 1972, Quarterly Reviews of Biophysics.

[93]  Liberman Ea,et al.  Kinetics of adhesion and surface electric conductivity of bimolecular phospholipid membranes , 1972 .

[94]  A. Darke,et al.  Deuteron magnetic resonance studies of water associated with phospholipids. , 1972, Chemistry and physics of lipids.

[95]  R. Kornberg,et al.  Inside-outside transitions of phospholipids in vesicle membranes. , 1971, Biochemistry.

[96]  Liberman Ea,et al.  Modelling cell membrane interactions on artificial phospholipid membranes , 1970 .

[97]  A. R. Poole,et al.  Lysolecithin and Cell Fusion , 1970, Nature.

[98]  G. Palade,et al.  STRUCTURAL MODULATIONS OF PLASMALEMMAL VESICLES , 1968, The Journal of cell biology.

[99]  Liberman Ea,et al.  A study of the interaction of artificial phospholipid membranes , 1968 .

[100]  R. M. Williams,et al.  Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacyl-phosphatidylcholines (lecithins) , 1967 .

[101]  E. Rojas,et al.  MEMBRANE MODEL: ASSOCIATION OF INORGANIC CATIONS WITH PHOSPHOLIPID MONOLAYERS. , 1965, Biochimica et biophysica acta.

[102]  R. Rand,et al.  MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. II. VISCOELASTIC BREAKDOWN OF THE MEMBRANE. , 1964, Biophysical journal.

[103]  D. O. Rudin,et al.  Reconstitution of Cell Membrane Structure in vitro and its Transformation into an Excitable System , 1962, Nature.