Cloud based real-time collaborative filtering for item-item recommendations

We describe a large scale implementation of a video recommendation system in use by the largest media group in Latin America. Taking advantage of existing recommendation system techniques, the proposed architecture goes beyond the state of the art by making use of a commercial cloud computing platform to provide scalability, reduce costs and, more importantly, response times. We discuss the implementation in detail, in particular the design of cloud based features. We also provide a comprehensive generalization of the architecture that allows its application in other settings.

[1]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[2]  Yehuda Koren,et al.  Factor in the neighbors: Scalable and accurate collaborative filtering , 2010, TKDD.

[3]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[4]  John Riedl,et al.  Recommender systems in e-commerce , 1999, EC '99.

[5]  Domonkos Tikk,et al.  Recommending new movies: even a few ratings are more valuable than metadata , 2009, RecSys '09.

[6]  John Riedl,et al.  Explaining collaborative filtering recommendations , 2000, CSCW '00.

[7]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[8]  Linas Baltrunas,et al.  Towards Time-Dependant Recommendation based on Implicit Feedback , 2009 .

[9]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[10]  Michael J. Pazzani,et al.  User Modeling for Adaptive News Access , 2000, User Modeling and User-Adapted Interaction.

[11]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[12]  Taghi M. Khoshgoftaar,et al.  A Survey of Collaborative Filtering Techniques , 2009, Adv. Artif. Intell..

[13]  Din J. Wasem,et al.  Mining of Massive Datasets , 2014 .

[14]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[15]  Mladen A. Vouk,et al.  Cloud computing — Issues, research and implementations , 2008, ITI 2008 - 30th International Conference on Information Technology Interfaces.

[16]  Sam Ruby,et al.  RESTful Web Services , 2007 .

[17]  Ke Wang,et al.  Scalable collaborative filtering using incremental update and local link prediction , 2012, CIKM.

[18]  Ken Lang,et al.  NewsWeeder: Learning to Filter Netnews , 1995, ICML.

[19]  Dimitris Plexousakis,et al.  Alleviating the Sparsity Problem of Collaborative Filtering Using Trust Inferences , 2005, iTrust.

[20]  D. McLeod,et al.  Collaborative Filtering for Information Recommendation Systems , 2006 .

[21]  GeunSik Jo,et al.  Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation , 2010, Electron. Commer. Res. Appl..

[22]  Yehuda Koren,et al.  Collaborative filtering with temporal dynamics , 2009, KDD.

[23]  Mladen A. Vouk,et al.  Cloud Computing – Issues, Research and Implementations , 2008, CIT 2008.

[24]  John Riedl,et al.  Analysis of recommendation algorithms for e-commerce , 2000, EC '00.

[25]  Annabelle Gawer What Managers Need to Know about Platforms , 2011 .

[26]  John Riedl,et al.  Combining Collaborative Filtering with Personal Agents for Better Recommendations , 1999, AAAI/IAAI.

[27]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[28]  David Cearley,et al.  Hype Cycle for Cloud Computing , 2010 , 2010 .

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.