Efficient sampling algorithm for large-scale optimization under uncertainty problems

Abstract Uncertainty is part of the real-world optimization problems. The major bottleneck in solving large-scale stochastic optimization problems is the computational intensity of scenarios or samples. To this end, this research presents a novel sampling approach. This sampling called LHS-SOBOL combines one-dimensional uniformity of LHS and d-dimensional uniformity of Sobol. This paper analyzes existing and novel sampling techniques by conducting large-scale experiments with different functions. The sampling techniques which are analyzed are Monte Carlo Sampling (MCS), Latin Hypercube Sampling (LHS), Hammersley Sequence Sampling (HSS), Latin Hypercube-Hammersley Sequence Sampling (LHS-HSS), Sobol Sampling, and the proposed novel Latin Hypercube-Sobol Sampling (LHS-SOBOL). It was found that HSS performs better up to 40 uncertain variables, Sobol up to 100 variables, LHS-HSS up to 250 variables, and LHS-SOBOL for large-scale uncertainties for larger than 100 variables.

[1]  Urmila M. Diwekar,et al.  Introduction to Applied Optimization , 2020, Springer Optimization and Its Applications.

[2]  许旱峤,et al.  Kirk-Othmer Encyclopedia of Chemical Technology数据库介绍及实例 , 2007 .

[3]  Raul Poler,et al.  Models for production planning under uncertainty: A review ☆ , 2006 .

[4]  Donald E. Knuth,et al.  The art of computer programming: V.1.: Fundamental algorithms , 1997 .

[5]  A. M. Geoffrion,et al.  Multicommodity Distribution System Design by Benders Decomposition , 1974 .

[6]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[7]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[8]  A. Sudjianto,et al.  An Efficient Algorithm for Constructing Optimal Design of Computer Experiments , 2005, DAC 2003.

[9]  Iftekhar A. Karimi,et al.  Design of computer experiments: A review , 2017, Comput. Chem. Eng..

[10]  I. Sobol Uniformly distributed sequences with an additional uniform property , 1976 .

[11]  Marc Goetschalckx,et al.  Strategic production-distribution models: A critical review with emphasis on global supply chain models , 1997 .

[12]  Andreas Drexl,et al.  Facility location models for distribution system design , 2005, Eur. J. Oper. Res..

[13]  Ronald L. Iman,et al.  A FORTRAN-77 PROGRAM AND USER'S GUIDE FOR THE GENERATION OF LATIN HYPERCUBE AND RANDOM SAMPLES FOR USE WITH COMPUTER MODELS , 1984 .

[14]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[15]  Pritam Ranjan,et al.  Space-filling Latin hypercube designs based on randomization restrictions in factorial experiments , 2013 .

[16]  I. Sobol,et al.  Construction and Comparison of High-Dimensional Sobol' Generators , 2011 .

[17]  Hongmei Chi,et al.  On the Scrambled Sobol Sequence , 2005, International Conference on Computational Science.

[18]  Luc Pronzato,et al.  Design of computer experiments: space filling and beyond , 2011, Statistics and Computing.

[19]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[20]  Nikolaos V. Sahinidis,et al.  Optimization under uncertainty: state-of-the-art and opportunities , 2004, Comput. Chem. Eng..

[21]  Max Henrion,et al.  Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis , 1990 .

[22]  Frances Y. Kuo,et al.  Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..

[23]  Urmila M. Diwekar,et al.  Efficient sampling techniques for uncertainties in risk analysis , 2004 .

[24]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[25]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[26]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[27]  A. Rollett,et al.  The Monte Carlo Method , 2004 .

[28]  W. J. Whiten,et al.  Computational investigations of low-discrepancy sequences , 1997, TOMS.

[29]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[30]  Urmila M. Diwekar,et al.  An efficient sampling technique for off-line quality control , 1997 .

[31]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[32]  Douglas J. Thomas,et al.  Coordinated supply chain management , 1996 .

[33]  Peter Winker,et al.  Centered L2-discrepancy of random sampling and Latin hypercube design, and construction of uniform designs , 2002, Math. Comput..

[34]  Urmila M. Diwekar,et al.  USG Uses Stochastic Optimization to Lower Distribution Costs , 2015, Interfaces.

[35]  U. Diwekar,et al.  Efficient sampling technique for optimization under uncertainty , 1997 .