Molecular enhanced sampling with autoencoders: On‐the‐fly collective variable discovery and accelerated free energy landscape exploration

Macromolecular and biomolecular folding landscapes typically contain high free energy barriers that impede efficient sampling of configurational space by standard molecular dynamics simulation. Biased sampling can artificially drive the simulation along prespecified collective variables (CVs), but success depends critically on the availability of good CVs associated with the important collective dynamical motions. Nonlinear machine learning techniques can identify such CVs but typically do not furnish an explicit relationship with the atomic coordinates necessary to perform biased sampling. In this work, we employ auto‐associative artificial neural networks (“autoencoders”) to learn nonlinear CVs that are explicit and differentiable functions of the atomic coordinates. Our approach offers substantial speedups in exploration of configurational space, and is distinguished from existing approaches by its capacity to simultaneously discover and directly accelerate along data‐driven CVs. We demonstrate the approach in simulations of alanine dipeptide and Trp‐cage, and have developed an open‐source and freely available implementation within OpenMM. © 2018 Wiley Periodicals, Inc.

[1]  Michael Habeck,et al.  Bayesian estimation of free energies from equilibrium simulations. , 2012, Physical review letters.

[2]  William Swope,et al.  Understanding folding and design: Replica-exchange simulations of ``Trp-cage'' miniproteins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Tuckerman,et al.  Efficient and direct generation of multidimensional free energy surfaces via adiabatic dynamics without coordinate transformations. , 2008, The journal of physical chemistry. B.

[4]  D. Frenkel Free-energy calculations , 1991 .

[5]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical Review Letters.

[6]  M. Parrinello,et al.  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. , 2008, Physical review letters.

[7]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[8]  C. Dellago,et al.  Reaction coordinates of biomolecular isomerization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Matthias Scholz,et al.  Nonlinear Principal Component Analysis: Neural Network Models and Applications , 2008 .

[10]  Peter G Bolhuis,et al.  Two-state protein folding kinetics through all-atom molecular dynamics based sampling. , 2009, Frontiers in bioscience.

[11]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1994, ACM Trans. Graph..

[12]  John D. Chodera,et al.  Long-Time Protein Folding Dynamics from Short-Time Molecular Dynamics Simulations , 2006, Multiscale Model. Simul..

[13]  R. Zhou Free energy landscape of protein folding in water: Explicit vs. implicit solvent , 2003, Proteins.

[14]  A. Voter Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events , 1997 .

[15]  Giacomo Fiorin,et al.  Using collective variables to drive molecular dynamics simulations , 2013 .

[16]  Ruhong Zhou,et al.  Hydrophobic aided replica exchange: an efficient algorithm for protein folding in explicit solvent. , 2006, The journal of physical chemistry. B.

[17]  Gerhard Stock,et al.  How complex is the dynamics of Peptide folding? , 2007, Physical review letters.

[18]  Yuko Okamoto,et al.  Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. , 2003, Journal of molecular graphics & modelling.

[19]  P. Bolhuis,et al.  Sampling the multiple folding mechanisms of Trp-cage in explicit solvent , 2006, Proceedings of the National Academy of Sciences.

[20]  J. Åqvist,et al.  Molecular Dynamics Simulations of Water and Biomolecules with a Monte Carlo Constant Pressure Algorithm , 2004 .

[21]  Yoshua Bengio,et al.  Practical Recommendations for Gradient-Based Training of Deep Architectures , 2012, Neural Networks: Tricks of the Trade.

[22]  Shuicheng Yan,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007 .

[23]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[24]  Yves Chauvin,et al.  Backpropagation: theory, architectures, and applications , 1995 .

[25]  Kristóf Huszár,et al.  Structural insights into the Trp-cage folding intermediate formation. , 2013, Chemistry.

[26]  E. Vanden-Eijnden,et al.  String method for the study of rare events , 2002, cond-mat/0205527.

[27]  Ken A Dill,et al.  Use of the Weighted Histogram Analysis Method for the Analysis of Simulated and Parallel Tempering Simulations. , 2007, Journal of chemical theory and computation.

[28]  Aswin Sai Narain Seshasayee,et al.  High-Temperature unfolding of a trp-Cage mini-protein: a molecular dynamics simulation study , 2005, Theoretical Biology and Medical Modelling.

[29]  Hernan F. Stamati,et al.  Application of nonlinear dimensionality reduction to characterize the conformational landscape of small peptides , 2010, Proteins.

[30]  Ronald M Levy,et al.  How kinetics within the unfolded state affects protein folding: an analysis based on markov state models and an ultra-long MD trajectory. , 2013, The journal of physical chemistry. B.

[31]  G. Henkelman,et al.  Optimization methods for finding minimum energy paths. , 2008, The Journal of chemical physics.

[32]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[33]  Michele Parrinello,et al.  Using sketch-map coordinates to analyze and bias molecular dynamics simulations , 2012, Proceedings of the National Academy of Sciences.

[34]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[35]  Yuji Sugita,et al.  Replica-exchange multicanonical algorithm and multicanonical replica-exchange method for simulating systems with rough energy landscape , 2000, cond-mat/0009119.

[36]  G. Hummer,et al.  Are current molecular dynamics force fields too helical? , 2008, Biophysical journal.

[37]  C. Brooks Computer simulation of liquids , 1989 .

[38]  Frank Kjeldsen,et al.  A direct comparison of protein structure in the gas and solution phase: the Trp-cage. , 2007, The journal of physical chemistry. B.

[39]  J. Parks,et al.  Conformational change in unsolvated Trp-cage protein probed by fluorescence. , 2005, Journal of the American Chemical Society.

[40]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[41]  Peter G. Bolhuis,et al.  A novel path sampling method for the calculation of rate constants , 2003 .

[42]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[43]  M. Tuckerman,et al.  On the use of the adiabatic molecular dynamics technique in the calculation of free energy profiles , 2002 .

[44]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[45]  Cecilia Clementi,et al.  Polymer reversal rate calculated via locally scaled diffusion map. , 2011, The Journal of chemical physics.

[46]  V. Pande,et al.  The Trp cage: folding kinetics and unfolded state topology via molecular dynamics simulations. , 2002, Journal of the American Chemical Society.

[47]  Lydia E Kavraki,et al.  Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction , 2006, Proc. Natl. Acad. Sci. USA.

[48]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[49]  Rosalind J Allen,et al.  Forward flux sampling for rare event simulations , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[50]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[51]  Grubmüller,et al.  Predicting slow structural transitions in macromolecular systems: Conformational flooding. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[52]  W. Briels,et al.  THE CALCULATION OF FREE-ENERGY DIFFERENCES BY CONSTRAINED MOLECULAR-DYNAMICS SIMULATIONS , 1998 .

[53]  Gerhard Hummer,et al.  Convergence and error estimation in free energy calculations using the weighted histogram analysis method , 2012, J. Comput. Chem..

[54]  U. Hansmann Parallel tempering algorithm for conformational studies of biological molecules , 1997, physics/9710041.

[55]  Harold W. Hatch,et al.  Computational study of the stability of the miniprotein trp-cage, the GB1 β-hairpin, and the AK16 peptide, under negative pressure. , 2014, The journal of physical chemistry. B.

[56]  C. Clementi,et al.  Discovering mountain passes via torchlight: methods for the definition of reaction coordinates and pathways in complex macromolecular reactions. , 2013, Annual review of physical chemistry.

[57]  P. Debenedetti,et al.  Computational investigation of dynamical transitions in Trp-cage miniprotein powders , 2016, Scientific Reports.

[58]  Jiří Vondrášek,et al.  Urea and guanidinium induced denaturation of a Trp-cage miniprotein. , 2011, The journal of physical chemistry. B.

[59]  C. Bartels Analyzing biased Monte Carlo and molecular dynamics simulations , 2000 .

[60]  Christian Bartels,et al.  Multidimensional adaptive umbrella sampling: Applications to main chain and side chain peptide conformations , 1997 .

[61]  David Chandler,et al.  Transition path sampling: throwing ropes over rough mountain passes, in the dark. , 2002, Annual review of physical chemistry.

[62]  Anthony K. Felts,et al.  Temperature weighted histogram analysis method, replica exchange, and transition paths. , 2005, The journal of physical chemistry. B.

[63]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[64]  W. E,et al.  Finite temperature string method for the study of rare events. , 2002, Journal of Physical Chemistry B.

[65]  P. Bolhuis,et al.  Multiple state transition path sampling. , 2008, The Journal of chemical physics.

[66]  Ioannis G. Kevrekidis,et al.  Nonlinear dimensionality reduction in molecular simulation: The diffusion map approach , 2011 .

[67]  Jianzhong Wang,et al.  Geometric Structure of High-Dimensional Data and Dimensionality Reduction , 2012 .

[68]  C. Vega,et al.  A general purpose model for the condensed phases of water: TIP4P/2005. , 2005, The Journal of chemical physics.

[69]  S. Woods,et al.  The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. S. 211-215 , 2005 .

[70]  Joan-Emma Shea,et al.  Characteristics of Impactful Computational Contributions to The Journal of Physical Chemistry B. , 2020, The journal of physical chemistry. B.

[71]  B. Roux The calculation of the potential of mean force using computer simulations , 1995 .

[72]  H. Bourlard,et al.  Auto-association by multilayer perceptrons and singular value decomposition , 1988, Biological Cybernetics.

[73]  Veda P. Pandey,et al.  Terpenoids as promising therapeutic molecules against Alzheimer’s disease: amyloid beta- and acetylcholinesterase-directed pharmacokinetic and molecular docking analyses , 2018 .

[74]  W. Kabsch A solution for the best rotation to relate two sets of vectors , 1976 .

[75]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Ioannis G Kevrekidis,et al.  Integrating diffusion maps with umbrella sampling: application to alanine dipeptide. , 2011, The Journal of chemical physics.

[77]  S. Asher,et al.  UV-resonance raman thermal unfolding study of Trp-cage shows that it is not a simple two-state miniprotein. , 2005, Journal of the American Chemical Society.

[78]  Marino Arroyo,et al.  Modeling and enhanced sampling of molecular systems with smooth and nonlinear data-driven collective variables. , 2013, The Journal of chemical physics.

[79]  I. Kevrekidis,et al.  Coarse molecular dynamics of a peptide fragment: Free energy, kinetics, and long-time dynamics computations , 2002, physics/0212108.

[80]  Cecilia Clementi,et al.  Rapid exploration of configuration space with diffusion-map-directed molecular dynamics. , 2013, The journal of physical chemistry. B.

[81]  Francesco Luigi Gervasio,et al.  From A to B in free energy space. , 2007, The Journal of chemical physics.

[82]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[83]  García,et al.  Large-amplitude nonlinear motions in proteins. , 1992, Physical review letters.

[84]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[85]  Peter G Bolhuis,et al.  Rate constants for diffusive processes by partial path sampling. , 2004, The Journal of chemical physics.

[86]  Eric Vanden-Eijnden,et al.  On-the-fly free energy parameterization via temperature accelerated molecular dynamics. , 2012, Chemical physics letters.

[87]  J. W. Neidigh,et al.  The Trp-cage: optimizing the stability of a globular miniprotein. , 2008, Protein engineering, design & selection : PEDS.

[88]  Journal of Computer-Aided Molecular Design incorporating Perspectives in Drug Discovery and Design , 2005 .

[89]  R. Dror,et al.  How Fast-Folding Proteins Fold , 2011, Science.

[90]  Martin Zacharias,et al.  Folding simulations of Trp‐cage mini protein in explicit solvent using biasing potential replica‐exchange molecular dynamics simulations , 2009, Proteins.

[91]  R. Best,et al.  Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse. , 2010, The journal of physical chemistry. B.

[92]  M. Nadeau,et al.  Proteins : Structure , Function , and Bioinformatics , 2022 .

[93]  F E Cohen,et al.  Protein conformational landscapes: Energy minimization and clustering of a long molecular dynamics trajectory , 1995, Proteins.

[94]  Leif Ellingson,et al.  Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis , 2015 .

[95]  Andrew L. Ferguson,et al.  An experimental and computational investigation of spontaneous lasso formation in microcin J25. , 2010, Biophysical journal.

[96]  Andrew L. Ferguson,et al.  BayesWHAM: A Bayesian approach for free energy estimation, reweighting, and uncertainty quantification in the weighted histogram analysis method , 2017, J. Comput. Chem..

[97]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[98]  Grgoire Montavon,et al.  Neural Networks: Tricks of the Trade , 2012, Lecture Notes in Computer Science.

[99]  J. W. Neidigh,et al.  Designing a 20-residue protein , 2002, Nature Structural Biology.

[100]  G. Ciccotti,et al.  Blue Moon Approach to Rare Events , 2004 .

[101]  Jiye Shi,et al.  Enhanced sampling molecular dynamics simulation captures experimentally suggested intermediate and unfolded states in the folding pathway of Trp-cage miniprotein. , 2012, The Journal of chemical physics.

[102]  Garegin A Papoian,et al.  Deconstructing the native state: energy landscapes, function, and dynamics of globular proteins. , 2009, The journal of physical chemistry. B.

[103]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[104]  C. Bachoc,et al.  Applied and Computational Harmonic Analysis Tight P-fusion Frames , 2022 .

[105]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[106]  Imre G. Csizmadia,et al.  Variation of conformational properties at a glance. True graphical visualization of the Ramachandran surface topology as a periodic potential energy surface , 2012 .

[107]  Michele Parrinello,et al.  Simplifying the representation of complex free-energy landscapes using sketch-map , 2011, Proceedings of the National Academy of Sciences.

[108]  Marino Arroyo,et al.  Topological obstructions in the way of data-driven collective variables. , 2015, The Journal of chemical physics.

[109]  Hong Chen,et al.  Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems , 1995, IEEE Trans. Neural Networks.

[110]  Aaron R Dinner,et al.  Automatic method for identifying reaction coordinates in complex systems. , 2005, The journal of physical chemistry. B.

[111]  Ernesto E. Borrero,et al.  Reaction coordinates and transition pathways of rare events via forward flux sampling. , 2007, The Journal of chemical physics.

[112]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[113]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[114]  M. Maggioni,et al.  Determination of reaction coordinates via locally scaled diffusion map. , 2011, The Journal of chemical physics.

[115]  M. Karplus,et al.  Molecular dynamics simulations in biology , 1990, Nature.

[116]  S. Brooks,et al.  Optimization Using Simulated Annealing , 1995 .

[117]  R. Miranda,et al.  Circular Nodes in Neural Networks , 1996, Neural Computation.

[118]  H. Edelsbrunner Surface Reconstruction by Wrapping Finite Sets in Space , 2003 .

[119]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[120]  Vojtěch Spiwok,et al.  Metadynamics in the conformational space nonlinearly dimensionally reduced by Isomap. , 2011, The Journal of chemical physics.

[121]  A. Garcia,et al.  Computing the stability diagram of the Trp-cage miniprotein , 2008, Proceedings of the National Academy of Sciences.

[122]  Ioannis G Kevrekidis,et al.  Intrinsic map dynamics exploration for uncharted effective free-energy landscapes , 2016, Proceedings of the National Academy of Sciences.

[123]  Martin Zacharias,et al.  Role of Tryptophan Side Chain Dynamics on the Trp-Cage Mini-Protein Folding Studied by Molecular Dynamics Simulations , 2014, PloS one.

[124]  Vijay S. Pande,et al.  OpenMM 7: Rapid development of high performance algorithms for molecular dynamics , 2016, bioRxiv.

[125]  Giovanni Bussi,et al.  Enhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration , 2013, Entropy.

[126]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[127]  Eric Darve,et al.  Adaptive biasing force method for scalar and vector free energy calculations. , 2008, The Journal of chemical physics.

[128]  Diwakar Shukla,et al.  OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation. , 2013, Journal of chemical theory and computation.

[129]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[130]  G. Ciccotti,et al.  Constrained reaction coordinate dynamics for the simulation of rare events , 1989 .

[131]  E. Vanden-Eijnden,et al.  A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations , 2006 .

[132]  H. Jónsson,et al.  Nudged elastic band method for finding minimum energy paths of transitions , 1998 .

[133]  Vijay S. Pande,et al.  Accelerating molecular dynamic simulation on graphics processing units , 2009, J. Comput. Chem..

[134]  Andrew E. Torda,et al.  Local elevation: A method for improving the searching properties of molecular dynamics simulation , 1994, J. Comput. Aided Mol. Des..

[135]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[136]  Michele Parrinello,et al.  Demonstrating the Transferability and the Descriptive Power of Sketch-Map. , 2013, Journal of chemical theory and computation.

[137]  A Mitsutake,et al.  Generalized-ensemble algorithms for molecular simulations of biopolymers. , 2000, Biopolymers.

[138]  Andrei Zinovyev,et al.  Principal Manifolds for Data Visualization and Dimension Reduction , 2007 .

[139]  T. Straatsma,et al.  Free energy of ionic hydration: Analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations , 1988 .

[140]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[141]  C. Dellago,et al.  Transition path sampling and the calculation of rate constants , 1998 .

[142]  J. Preto,et al.  Fast recovery of free energy landscapes via diffusion-map-directed molecular dynamics. , 2014, Physical chemistry chemical physics : PCCP.

[143]  A. Voter,et al.  Temperature-accelerated dynamics for simulation of infrequent events , 2000 .

[144]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[145]  Rafael C. Bernardi,et al.  Enhanced sampling techniques in molecular dynamics simulations of biological systems. , 2015, Biochimica et biophysica acta.

[146]  Pierre-Antoine Absil,et al.  Principal Manifolds for Data Visualization and Dimension Reduction , 2007 .

[147]  P E Bourne,et al.  The Protein Data Bank. , 2002, Nucleic acids research.

[148]  A. Schug,et al.  Energy landscape paving simulations of the trp-cage protein. , 2005, The Journal of chemical physics.

[149]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[150]  Peter G Bolhuis,et al.  Folding dynamics of the Trp-cage miniprotein: evidence for a native-like intermediate from combined time-resolved vibrational spectroscopy and molecular dynamics simulations. , 2013, The journal of physical chemistry. B.

[151]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[152]  D. Ferguson,et al.  Isothermal-isobaric molecular dynamics simulations with Monte Carlo volume sampling , 1995 .

[153]  Bernhardt L Trout,et al.  Extensions to the likelihood maximization approach for finding reaction coordinates. , 2007, The Journal of chemical physics.

[154]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[155]  S. Takada,et al.  On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction , 2002 .

[156]  Carmeline J. Dsilva,et al.  Systematic characterization of protein folding pathways using diffusion maps: application to Trp-cage miniprotein. , 2015, The Journal of chemical physics.

[157]  M. Karplus,et al.  Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations , 1991, Proteins.

[158]  Tamar Schlick,et al.  Molecular Modeling and Simulation: An Interdisciplinary Guide , 2010 .

[159]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[160]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[161]  R. Zhou Trp-cage: Folding free energy landscape in explicit water , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[162]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[163]  Andrew L. Ferguson,et al.  Systematic determination of order parameters for chain dynamics using diffusion maps , 2010, Proceedings of the National Academy of Sciences.

[164]  A. Roitberg,et al.  Smaller and faster: the 20-residue Trp-cage protein folds in 4 micros. , 2002, Journal of the American Chemical Society.

[165]  B. Trout,et al.  Obtaining reaction coordinates by likelihood maximization. , 2006, The Journal of chemical physics.

[166]  A. Kolinski,et al.  Coarse-Grained Protein Models and Their Applications. , 2016, Chemical reviews.

[167]  J. van Leeuwen,et al.  Neural Networks: Tricks of the Trade , 2002, Lecture Notes in Computer Science.

[168]  K. Dill,et al.  Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. , 2007, The Journal of chemical physics.

[169]  Greg L. Hura,et al.  Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. , 2004, The Journal of chemical physics.

[170]  Roman A. Zubarev,et al.  Probing solution- and gas-phase structures of Trp-cage cations by chiral substitution and spectroscopic techniques , 2006 .