Clustering image noise patterns by embedding and visualization for common source camera detection

Abstract We consider the problem of clustering a large set of images based on similarities of their noise patterns. Such clustering is necessary in forensic cases in which detection of common source of images is required, when the cameras are not physically available. We propose a novel method for clustering combining low dimensional embedding, visualization, and classical clustering of the dataset based on the similarity scores. We evaluate our method on the Dresden images database showing that the methodology is highly effective.

[1]  Teun Baar,et al.  Improving source camera identification using a simplified total variation based noise removal algorithm , 2013, Digit. Investig..

[2]  J. Fridrich,et al.  Digital image forensics , 2009, IEEE Signal Processing Magazine.

[3]  Chang-Tsun Li Unsupervised classification of digital images using enhanced sensor pattern noise , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[4]  Julia Hirschberg,et al.  V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure , 2007, EMNLP.

[5]  Graham R. Wood,et al.  Statistical Methods: The Geometric Approach , 1991 .

[6]  Charu C. Aggarwal,et al.  On the Surprising Behavior of Distance Metrics in High Dimensional Spaces , 2001, ICDT.

[7]  J. Huang,et al.  Curse of dimensionality and particle filters , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[8]  Omar M. Fahmy An efficient clustering technique for cameras identification using sensor pattern noise , 2015, 2015 International Conference on Systems, Signals and Image Processing (IWSSIP).

[9]  Nasir D. Memon,et al.  Sensor Fingerprint Identification Through Composite Fingerprints and Group Testing , 2015, IEEE Transactions on Information Forensics and Security.

[10]  Jingzhou Liu,et al.  Visualizing Large-scale and High-dimensional Data , 2016, WWW.

[11]  Chang-Tsun Li Large-Scale Image Clustering Based on Camera Fingerprints , 2017, IEEE Transactions on Information Forensics and Security.

[12]  Min Wu,et al.  Exploring compression effects for improved source camera identification using strongly compressed video , 2011, 2011 18th IEEE International Conference on Image Processing.

[13]  Julio Gonzalo,et al.  A comparison of extrinsic clustering evaluation metrics based on formal constraints , 2008, Information Retrieval.

[14]  Miroslav Goljan,et al.  Digital Camera Identification from Images - Estimating False Acceptance Probability , 2008, IWDW.

[15]  Zeno Geradts,et al.  Common source identification of images in large databases. , 2014, Forensic science international.

[16]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[17]  Laurens van der Maaten,et al.  Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..

[18]  Matthias Kirchner,et al.  Unexpected artefacts in PRNU-based camera identification: a 'Dresden Image Database' case-study , 2012, MM&Sec '12.

[19]  M. Cugmas,et al.  On comparing partitions , 2015 .

[20]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[21]  Mo Chen,et al.  Determining Image Origin and Integrity Using Sensor Noise , 2008, IEEE Transactions on Information Forensics and Security.

[22]  Andrea Marino,et al.  Blind image clustering based on the Normalized Cuts criterion for camera identification , 2014, Signal Process. Image Commun..

[23]  Miroslav Goljan,et al.  Digital camera identification from sensor pattern noise , 2006, IEEE Transactions on Information Forensics and Security.

[24]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[25]  Eamonn J. Keogh,et al.  Curse of Dimensionality , 2010, Encyclopedia of Machine Learning.

[26]  F. J. Anscombe,et al.  Graphs in Statistical Analysis , 1973 .

[27]  Roberto Caldelli,et al.  Fast image clustering of unknown source images , 2010, 2010 IEEE International Workshop on Information Forensics and Security.

[28]  Greg J. Bloy Blind Camera Fingerprinting and Image Clustering , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[30]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[31]  Rainer Böhme,et al.  The 'Dresden Image Database' for benchmarking digital image forensics , 2010, SAC '10.