Debris discs and comet populations around Sun-like stars: the Solar system in context

Numerous nearby FGK dwarfs possess discs of debris generated by collisions among comets. Here, we fit the levels of dusty excess observed by Spitzer at 70 μm and show that they form a rather smooth distribution. Taking into account the transition of the dust removal process from collisional to Poynting–Robertson drag, all the stars may be empirically fitted by a single population with many low-excess members. Within this ensemble, the Kuiper Belt is inferred to be such a low-dust example, among the last 10 per cent of stars, with a small cometary population. Analogue systems hosting gas giant planets and a modest comet belt should occur for only a few per cent of Sun-like stars, and so terrestrial planets with a comparable cometary impact rate to the Earth may be uncommon. The nearest such analogue system presently known is HD 154345 at 18 pc, but accounting for survey completeness, a closer example should lie at around 10 pc.

[1]  M. Fridlund,et al.  q1 Eridani: a solar-type star with a planet and a dust belt , 2008, 0803.1294.

[2]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[3]  A. Triaud,et al.  The Top Ten solar analogs in the ELODIE library , 2004 .

[4]  A. Moro-martin,et al.  The Complete Census of 70 μm-Bright Debris Disks within “The Formation and Evolution of Planetary Systems” Spitzer Legacy Survey of Sun-like Stars , 2007, 0801.0163.

[5]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[6]  M. Bailey,et al.  Near-Earth object velocity distributions and consequences for the Chicxulub impactor , 2001 .

[7]  K. Y. L. Su,et al.  Steady State Evolution of Debris Disks around A Stars , 2007 .

[8]  G. Bryden,et al.  From Mean Motion Resonances to Scattered Planets: Producing the Solar System, Eccentric Exoplanets, and Late Heavy Bombardments , 2007, 0706.1235.

[9]  Harold F. Levison,et al.  ON A SCATTERED-DISK ORIGIN FOR THE 2003 EL61 COLLISIONAL FAMILY—AN EXAMPLE OF THE IMPORTANCE OF COLLISIONS ON THE DYNAMICS OF SMALL BODIES , 2007, 0809.0553.

[10]  M. Patzkowsky,et al.  Geographic variation in turnover and recovery from the Late Ordovician mass extinction , 2007 .

[11]  K. Y. L. Su,et al.  Debris Disks around Sun-like Stars , 2007, 0710.5498.

[12]  Austin,et al.  A Decreased Probability of Habitable Planet Formation around Low-Mass Stars , 2007, 0707.1711.

[13]  Heidelberg,et al.  Origins of Solar System Dust beyond Jupiter , 2002 .

[14]  David E. Trilling,et al.  PLANETS AND DEBRIS DISKS: RESULTS FROM A SPITZER/MIPS SEARCH FOR INFRARED EXCESS , 2009 .

[15]  Charles S. Cockell,et al.  Emergence of a Habitable Planet , 2007 .

[16]  Andrew Cumming,et al.  The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.

[17]  K. Keil,et al.  Protostars and Planets V , 2007 .

[18]  S. Mojzsis,et al.  Microbial habitability of the Hadean Earth during the late heavy bombardment , 2009, Nature.

[19]  R. Nelson,et al.  Terrestrial planet formation in low-eccentricity warm-Jupiter systems , 2009, 0902.0052.

[20]  Massimo Marengo,et al.  First Look at the Fomalhaut Debris Disk with the Spitzer Space Telescope , 2004 .

[21]  C. Beichman,et al.  Predicting the frequencies of diverse exo-planetary systems , 2007, 0704.0873.

[22]  et al,et al.  Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey , 2005, astro-ph/0509199.

[23]  M. Wyatt The Insignificance of P-R drag in detectable extrasolar planetesimal belts , 2005, astro-ph/0501038.

[24]  Alessandro Morbidelli,et al.  The Kuiper Belt and its Primordial Sculpting , 2003 .

[25]  Michael R. Meyer,et al.  Evolution of Mid-Infrared Excess around Sun-like Stars: Constraints on Models of Terrestrial Planet Formation , 2007, 0712.1057.

[26]  C. Dominik,et al.  Age Dependence of the Vega Phenomenon: Theory , 2003, astro-ph/0308364.

[27]  R. Laureijs,et al.  Incidence and survival of remnant disks around main-sequence stars , 2000, astro-ph/0011137.

[28]  W. Holland,et al.  The debris disc around τ Ceti: a massive analogue to the Kuiper Belt , 2004 .

[29]  R. Stencel,et al.  Model of a Kuiper Belt Small Grain Population and Resulting Far-Infrared Emission , 1995 .

[30]  UK,et al.  The history of the Solar system's debris disc: observable properties of the Kuiper belt , 2009, 0906.3755.

[31]  S. Wolf,et al.  FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROPERTIES OF DEBRIS DUST AROUND SOLAR-TYPE STARS , 2008, 0810.1003.

[32]  et al,et al.  New Debris Disks around Nearby Main-Sequence Stars: Impact on the Direct Detection of Planets , 2006, astro-ph/0611682.

[33]  K. Y. L. Su,et al.  accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 2/19/04 DEBRIS DISK EVOLUTION AROUND A STARS , 2006 .

[34]  S. Wolf,et al.  Are Debris Disks and Massive Planets Correlated? , 2006, astro-ph/0612242.

[35]  Neptune’s Migration into a Stirred-Up Kuiper Belt: A Detailed Comparison of Simulations to Observations , 2005, astro-ph/0507319.

[36]  J. Greaves,et al.  Some anomalies in the occurrence of debris discs around main-sequence A and G stars , 2003 .

[37]  M. E. Brown,et al.  The Size Distribution of Trans-Neptunian Bodies* , 2004 .

[38]  Hubble Fellow,et al.  THE LOW LEVEL OF DEBRIS DISK ACTIVITY AT THE TIME OF THE LATE HEAVY BOMBARDMENT: A SPITZER STUDY OF PRAESEPE , 2009, The Astrophysical Journal.

[39]  R. O. Gray,et al.  Debris Disks in Main-Sequence Binary Systems , 2006, astro-ph/0612029.

[40]  J. Horner,et al.  Jupiter: friend or foe? , 2007 .

[41]  T. Löhne,et al.  Long-Term Collisional Evolution of Debris Disks , 2007, 0710.4294.

[42]  G. Bryden,et al.  Debris discs around nearby solar analogues , 2009, 0907.3677.

[43]  H. Aumann,et al.  IRAS Constraints on a Cold Cloud around the Solar System , 1990 .

[44]  Collisional processes in extrasolar planetesimal discs – dust clumps in Fomalhaut's debris disc , 2002, astro-ph/0204034.