A novel parameter estimation for hyperbolic frequency modulated signals using group delay

Abstract A two-stage technique for estimating hyperbolic frequency modulated (HFM) signal parameters is proposed. In the first stage, coarse parameter estimations are performed through a regression of the group delay estimate obtained from an unwrapped spectrum phase due to its robustness to noise. In the second stage, the coarse estimates are refined by a combination of the Newton-Raphson strategy and O'Shea refinement method. The proposed technique reaches the Cramer-Rao lower bound for HFM signal parameters, and it has better performance and lower computational complexity with respect to current state-of-the-art algorithms.

[1]  Georgios B. Giannakis,et al.  Improved estimation of hyperbolic frequency modulated chirp signals , 1999, IEEE Trans. Signal Process..

[2]  Vesna Popovic,et al.  Efficient instantaneous frequency estimation in high noise based on the Wigner distribution , 2019, Signal Process..

[3]  Igor Djurovic,et al.  Review of the quasi-maximum likelihood estimator for polynomial phase signals , 2018, Digit. Signal Process..

[4]  Vesna Popović-Bugarin,et al.  The STFT-Based Estimator of Micro-Doppler Parameters , 2017, IEEE Transactions on Aerospace and Electronic Systems.

[5]  K.G. Foote,et al.  Transmit-Signal Design and Processing Strategies for Sonar Target Phase Measurement , 2007, IEEE Journal of Selected Topics in Signal Processing.

[6]  Igor Djurovic,et al.  STFT-based estimator of polynomial phase signals , 2012, Signal Process..

[7]  Georgios B. Giannakis,et al.  Hybrid FM-polynomial phase signal modeling: parameter estimation and Cramer-Rao bounds , 1999, IEEE Trans. Signal Process..

[8]  Naoki Saito,et al.  Using edge information in time–frequency representations for chirp parameter estimation , 2005 .

[9]  Siyang Cao,et al.  Finite-Difference Algorithm for Polynomial Phase Signal Parameter Estimation , 2020, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Peter O'Shea,et al.  On Refining Polynomial Phase Signal Parameter Estimates , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[11]  Peter Willett,et al.  Range Bias Modeling for Hyperbolic-Frequency-Modulated Waveforms in Target Tracking , 2012 .

[12]  Boualem Boashash,et al.  Refining the ambiguity domain characteristics of non-stationary signals for improved time-frequency analysis: Test case of multidirectional and multicomponent piecewise LFM and HFM signals , 2018, Digit. Signal Process..

[13]  Shefeng Yan,et al.  Doppler Estimation Based on Dual-HFM Signal and Speed Spectrum Scanning , 2020, IEEE Signal Processing Letters.

[14]  Yuanxin Xu,et al.  Doppler estimation and timing synchronization of underwater acoustic communication based on hyperbolic frequency modulation signal , 2015, 2015 IEEE 12th International Conference on Networking, Sensing and Control.

[15]  Benjamin Friedlander,et al.  The discrete polynomial transform (DPT), its properties and applications , 1991, [1991] Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers.

[16]  W. Rudin Principles of mathematical analysis , 1964 .

[17]  K Itoh,et al.  Analysis of the phase unwrapping algorithm. , 1982, Applied optics.

[18]  F. Gini,et al.  Parameter estimation of hybrid hyperbolic FM and polynomial phase signals using the multi-lag high-order ambiguity function , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[19]  Siliang Wu,et al.  Novel parameter estimation of high-order polynomial phase signals using group delay , 2021, Signal Process..

[21]  Igor Djurovic,et al.  Quasi-maximum-likelihood estimator of polynomial phase signals , 2014, IET Signal Process..

[22]  John M. O'Toole,et al.  Robust estimation of highly-varying nonlinear instantaneous frequency of monocomponent signals using a lower-order complex-time distribution , 2013, Signal Process..

[23]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals , 1992, Proc. IEEE.

[24]  Igor Djurovic On parameters of the QML PPS estimator , 2015, Signal Process..

[25]  Meng Zhou,et al.  An underwater acoustic communication scheme exploiting biological sounds , 2016, Wirel. Commun. Mob. Comput..

[26]  Chien-Mo James Li,et al.  A new method for parameter estimation of high-order polynomial-phase signals , 2018, Signal Process..

[27]  Siliang Wu,et al.  A Novel Parameter Estimation for Polynomial Phase Signals Using the Spectrum Phase , 2020, IEEE Signal Processing Letters.

[28]  Mostefa Mesbah,et al.  IF estimation for multicomponent signals using image processing techniques in the time-frequency domain , 2007, Signal Process..

[29]  Benjamin Friedlander,et al.  Blind deconvolution of polynomial-phase signals using the high-order ambiguity function , 1996, Signal Process..

[30]  Ljubisa Stankovic,et al.  Local polynomial Wigner distribution , 1997, Signal Process..

[31]  Wei Sun,et al.  A method of velocity estimation using composite hyperbolic frequency-modulated signals in active sonar. , 2017, The Journal of the Acoustical Society of America.

[32]  Li Wang,et al.  Parameter estimation for HFM signals using combined STFT and iteratively reweighted least squares linear fitting , 2014, Signal Process..