An Arithmetic for Matrix Pencils

We deene an algebra on matrix pencils that is a natural extension of sums, products and quotients of real numbers. The classical algebra of linear transformations may be regarded as a special case of the algebra of pencils. The sum and product deened here preserve right deeating subspaces. We show below that the matrix sign function and the inverse-free algorithms can be derived from an algebra of linear relations. The linear algebra of relations suggests generalizations and variations of these algorithms.

[1]  R. Byers,et al.  Disk functions and their relationship to the matrix sign function , 1997, 1997 European Control Conference (ECC).

[2]  A. Malyshev Computing invariant subspaces of a regular linear pencil of matrices , 1989 .

[3]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[4]  James Demmel,et al.  Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I , 1993, PPSC.

[5]  S. Godunov,et al.  Circular dichotomy of the spectrum of a matrix , 1988 .

[6]  JUDITH D. GARDINER,et al.  A Stabilized Matrix Sign Function Algorithm for Solving Algebraic Riccati Equations , 1997, SIAM J. Sci. Comput..

[7]  S. Godunov Problem of the dichotomy of the spectrum of a matrix , 1986 .

[8]  R. Byers Numerical Stability and Instability in Matrix Sign Function Based Algorithms , 1986 .

[9]  V. Kublanovskaya,et al.  Spectral problems for matrix pencils. Methods and algorithms. I , 1988 .

[10]  James Demmel,et al.  The Spectral Decomposition of Nonsymmetric Matrices on Distributed Memory Parallel Computers , 1997, SIAM J. Sci. Comput..

[11]  N. Higham The matrix sign decomposition and its relation to the polar decomposition , 1994 .

[12]  Judith Gardiner,et al.  A generalization of the matrix sign function solution for algebraic Riccati equations , 1985, 1985 24th IEEE Conference on Decision and Control.

[13]  A. J. Laub,et al.  Hypercube implementation of some parallel algorithms in control , 1988 .

[14]  J. Demmel,et al.  An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems , 1997 .

[15]  E. Denman,et al.  The matrix sign function and computations in systems , 1976 .

[16]  Ji-guang Sun Perturbation analysis of the matrix sign function , 1997 .

[17]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .

[18]  R. Byers,et al.  The Matrix Sign Function Method and the Computation of Invariant Subspaces , 1997, SIAM J. Matrix Anal. Appl..

[19]  V. Kublanovskaya AB-Algorithm and its modifications for the spectral problems of linear pencils of matrices , 1984 .