Tractability properties of the weighted star discrepancy of the Halton sequence

We study the weighted star discrepancy of the Halton sequence. In particular, we show that the Halton sequence achieves strong polynomial tractability for the weighted star discrepancy for product weights $(\gamma_j)_{j \ge 1}$ under the mildest condition on the weight sequence known so far for explicitly constructive sequences. The condition requires $\sup_{d \ge 1} \max_{\emptyset \not= \mathfrak{u} \subseteq [d]} \prod_{j \in \mathfrak{u}} (j \gamma_j) < \infty$. The same result holds for Niederreiter sequences and for other types of digital sequences. Our results are true also for the weighted unanchored discrepancy.

[1]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[2]  Aicke Hinrichs,et al.  Covering numbers, Vapnik-ervonenkis classes and bounds for the star-discrepancy , 2004, J. Complex..

[3]  Friedrich Pillichshammer Tractability properties of the weighted star discrepancy of regular grids , 2018, J. Complex..

[4]  Xiaoqun Wang,et al.  Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..

[5]  Anand Srivastav,et al.  Bounds and constructions for the star-discrepancy via ?-covers , 2005, J. Complex..

[6]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[7]  Josef Dick,et al.  The weighted star discrepancy of Korobov's $p$-sets , 2014, 1404.0114.

[8]  Fred J. Hickernell,et al.  On strong tractability of weighted multivariate integration , 2004, Math. Comput..

[9]  Xiaoqun Wang A Constructive Approach to Strong Tractability Using Quasi-Monte Carlo Algorithms , 2002, J. Complex..

[10]  E. Novak,et al.  Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .

[11]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[12]  Josef Dick,et al.  Construction Algorithms for Digital Nets with Low Weighted Star Discrepancy , 2005, SIAM J. Numer. Anal..

[13]  Harald Niederreiter,et al.  Weighted Star Discrepancy of Digital Nets in Prime Bases , 2006 .

[14]  William W. L. Chen On irregularities of distribution. , 1980 .

[15]  Christoph Aistleitner,et al.  Covering numbers, dyadic chaining and discrepancy , 2011, J. Complex..

[16]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[17]  Fred J. Hickernell,et al.  The existence of good extensible rank-1 lattices , 2003, J. Complex..

[18]  G. Leobacher,et al.  Introduction to Quasi-Monte Carlo Integration and Applications , 2014 .

[19]  E. Novak,et al.  The inverse of the star-discrepancy depends linearly on the dimension , 2001 .

[20]  E. Novak,et al.  Tractability of Multivariate Problems, Volume III: Standard Information for Operators. , 2012 .

[21]  Christoph Aistleitner,et al.  Tractability results for the weighted star-discrepancy , 2013, J. Complex..

[22]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[23]  Aicke Hinrichs,et al.  Tractability properties of the weighted star discrepancy , 2008, J. Complex..

[24]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[25]  S. Tezuka Tractability of Multivariate Integration Using Low-Discrepancy Sequences , 2016 .