Tractability properties of the weighted star discrepancy of the Halton sequence
暂无分享,去创建一个
Aicke Hinrichs | Shu Tezuka | Friedrich Pillichshammer | S. Tezuka | A. Hinrichs | F. Pillichshammer
[1] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[2] Aicke Hinrichs,et al. Covering numbers, Vapnik-ervonenkis classes and bounds for the star-discrepancy , 2004, J. Complex..
[3] Friedrich Pillichshammer. Tractability properties of the weighted star discrepancy of regular grids , 2018, J. Complex..
[4] Xiaoqun Wang,et al. Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..
[5] Anand Srivastav,et al. Bounds and constructions for the star-discrepancy via ?-covers , 2005, J. Complex..
[6] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[7] Josef Dick,et al. The weighted star discrepancy of Korobov's $p$-sets , 2014, 1404.0114.
[8] Fred J. Hickernell,et al. On strong tractability of weighted multivariate integration , 2004, Math. Comput..
[9] Xiaoqun Wang. A Constructive Approach to Strong Tractability Using Quasi-Monte Carlo Algorithms , 2002, J. Complex..
[10] E. Novak,et al. Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .
[11] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[12] Josef Dick,et al. Construction Algorithms for Digital Nets with Low Weighted Star Discrepancy , 2005, SIAM J. Numer. Anal..
[13] Harald Niederreiter,et al. Weighted Star Discrepancy of Digital Nets in Prime Bases , 2006 .
[14] William W. L. Chen. On irregularities of distribution. , 1980 .
[15] Christoph Aistleitner,et al. Covering numbers, dyadic chaining and discrepancy , 2011, J. Complex..
[16] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[17] Fred J. Hickernell,et al. The existence of good extensible rank-1 lattices , 2003, J. Complex..
[18] G. Leobacher,et al. Introduction to Quasi-Monte Carlo Integration and Applications , 2014 .
[19] E. Novak,et al. The inverse of the star-discrepancy depends linearly on the dimension , 2001 .
[20] E. Novak,et al. Tractability of Multivariate Problems, Volume III: Standard Information for Operators. , 2012 .
[21] Christoph Aistleitner,et al. Tractability results for the weighted star-discrepancy , 2013, J. Complex..
[22] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[23] Aicke Hinrichs,et al. Tractability properties of the weighted star discrepancy , 2008, J. Complex..
[24] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[25] S. Tezuka. Tractability of Multivariate Integration Using Low-Discrepancy Sequences , 2016 .