Color processing in the medulla of the bumblebee (Apidae: Bombus impatiens)
暂无分享,去创建一个
[1] Walter Kaiser,et al. Horizontal movement detectors of honeybees: Directionally-selective visual neurons in the lobula and brain , 1982, Journal of comparative physiology.
[2] Uwe Homberg,et al. Movement‐sensitive, polarization‐sensitive, and light‐sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria , 1997, The Journal of comparative neurology.
[3] R. Menzel,et al. The spectral input systems of hymenopteran insects and their receptor-based colour vision , 2004, Journal of Comparative Physiology A.
[4] Nicholas J. Strausfeld,et al. Beneath the Compound Eye: Neuroanatomical Analysis and Physiological Correlates in the Study of Insect Vision , 1989 .
[5] M. Giurfa. Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well , 2007, Journal of Comparative Physiology A.
[6] Angelique C Paulk,et al. Higher order visual input to the mushroom bodies in the bee, Bombus impatiens. , 2008, Arthropod structure & development.
[7] W. Witthöft,et al. Absolute anzahl und verteilung der zellen im him der honigbiene , 2004, Zeitschrift für Morphologie der Tiere.
[8] M. Heisenberg. What do the mushroom bodies do for the insect brain? an introduction. , 1998, Learning & memory.
[9] F. Gribakin. Cellular Basis of Colour Vision in the Honey Bee , 1969, Nature.
[10] W. Gronenberg. Physiological and anatomical properties of optical input-fibres to the mushroom body in the bee brain , 1986 .
[11] Andrew M Dacks,et al. Phylogeny of a serotonin‐immunoreactive neuron in the primary olfactory center of the insect brain , 2006, The Journal of comparative neurology.
[12] M. Ibbotson. Evidence for velocity–tuned motion-sensitive descending neurons in the honeybee , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[13] N. Strausfeld,et al. Retinotopic pathways providing motion‐selective information to the lobula from peripheral elementary motion‐detecting circuits , 2003, The Journal of comparative neurology.
[14] M. Srinivasan. Pattern recognition in the honeybee: Recent progress , 1994 .
[15] H. Hertel. Chromatic properties of identified interneurons in the optic lobes of the bee , 1980, Journal of comparative physiology.
[16] F. Baumann,et al. A depolarizing aftereffect of intense light in the drone visual receptor. , 1972, Vision research.
[17] W. Ribi. The first optic ganglion of the bee , 1979, Cell and Tissue Research.
[18] N. J. Strausfeld,et al. The columnar organization of the second synaptic region of the visual system of Musca domestica L. , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[19] R. Menzel,et al. Chromatic properties of interneurons in the optic lobes of the bee , 1977, Journal of comparative physiology.
[20] N. Strausfeld,et al. Diverse speed response properties of motion sensitive neurons in the fly’s optic lobe , 2007, Journal of Comparative Physiology A.
[21] K. Fischbach,et al. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.
[22] J. Erber,et al. The modulatory effects of serotonin and octopamine in the visual system of the honey bee (Apis mellifera L.) , 2004, Journal of Comparative Physiology A.
[23] Gert Stange,et al. Directional Selectivity in the Simple Eye of an Insect , 2008, The Journal of Neuroscience.
[24] W. Gronenberg,et al. Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera) , 2002, The Journal of comparative neurology.
[25] T. Schultz,et al. Evidence for the origin of eusociality in the corbiculate bees (Hymenoptera: Apidae) , 2001 .
[26] Cole Gilbert,et al. Discrimination of visual motion from flicker by identified neurons in the medulla of the fleshfly Sarcophaga bullata , 1991, Journal of Comparative Physiology A.
[27] Tamar Keasar,et al. Location and Color Learning in Bumblebees in a Two-Phase Conditioning Experiment , 2001, Journal of Insect Behavior.
[28] N. Strausfeld. Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.
[29] A. Straw,et al. A `bright zone' in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity , 2006, Journal of Experimental Biology.
[30] J. Hildebrand,et al. Histamine‐immunoreactive neurons in the midbrain and suboesophageal ganglion of the sphinx moth Manduca sexta , 1991, The Journal of comparative neurology.
[31] E. Buchner,et al. Genetic depletion of histamine from the nervous system of Drosophila eliminates specific visual and mechanosensory behavior , 1996, Journal of Comparative Physiology A.
[32] N. Strausfeld,et al. Functionally and anatomically segregated visual pathways in the lobula complex of a calliphorid fly , 1998, The Journal of comparative neurology.
[33] Randolf Menzel,et al. Dimensions of cognition in an insect, the honeybee. , 2006, Behavioral and cognitive neuroscience reviews.
[34] Shaowu Zhang,et al. PROBING PERCEPTION IN A MINIATURE BRAIN : PATTERN RECOGNITION AND MAZE NAVIGATION IN HONEYBEES , 1998 .
[35] H. Hertel,et al. The physiology and morphology of visual commissures in the honeybee brain , 1987 .
[36] D. Osorio,et al. Directionally selective cells in the locust medulla , 1986, Journal of Comparative Physiology A.
[37] H. Hertel,et al. The Physiology and Morphology of Centrally Projecting Visual Interneurones in the Honeybee Brain , 1987 .
[38] J. Fellous,et al. The Processing of Color, Motion, and Stimulus Timing Are Anatomically Segregated in the Bumblebee Brain , 2008, The Journal of Neuroscience.
[39] Andrew D. Straw,et al. Vision Egg: an Open-Source Library for Realtime Visual Stimulus Generation , 2008, Frontiers Neuroinformatics.
[40] E. Callaway. Structure and function of parallel pathways in the primate early visual system , 2005, The Journal of physiology.
[41] N. Strausfeld,et al. Visual Motion-Detection Circuits in Flies: Parallel Direction- and Non-Direction-Sensitive Pathways between the Medulla and Lobula Plate , 1996, The Journal of Neuroscience.
[42] R. Menzel. Spectral sensitivity of monopolar cells in the bee lamina , 1974, Journal of comparative physiology.
[43] Dora Fix Ventura,et al. Response properties of stained monopolar cells in the honeybee lamina , 1992, Journal of Comparative Physiology A.
[44] G. E. Gregory. The Bodian Protargol Technique , 1980 .
[45] M. Heisenberg. Mushroom body memoir: from maps to models , 2003, Nature Reviews Neuroscience.
[46] R. Hardie. Is histamine a neurotransmitter in insect photoreceptors? , 1987, Journal of Comparative Physiology A.
[47] L. Goodman,et al. Ocellar projections within the central nervous system of the worker honey bee, Apis mellifera , 1977, Cell and Tissue Research.
[48] DH Hubel,et al. Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[49] F. Gribakin. The distribution of the long wave photoreceptors in the compound eye of the honey bee as revealed by selective osmic staining. , 1972, Vision research.
[50] R. Menzel,et al. Chromatic properties of interneurons in the optic lobes of the bee , 2004, Journal of comparative physiology.
[51] E. Meyer,et al. Histamine-like immunoreactivity in the visual system and brain of an orthopteran and a hymenopteran insect , 1996, Cell and Tissue Research.
[52] J. Milde. Graded potentials and action potentials in the large ocellar interneurons of the bee , 1981, Journal of comparative physiology.
[53] Dr. Willi A. Ribi,et al. The Neurons of the First Optic Ganglion of the Bee (Apis mellifera) , 1975, Advances in Anatomy, Embryology and Cell Biology / Ergebnisse der Anatomie und Entwicklungsgeschichte / Revues d’anatomie et de morphologie expérimentale.
[54] Claude Desplan,et al. The Color-Vision Circuit in the Medulla of Drosophila , 2008, Current Biology.
[55] D. C. O'Carroll,et al. Local feedback mediated via amacrine cells in the insect optic lobe , 2004, Journal of Comparative Physiology A.
[56] W. Ribi. The first optic ganglion of the bee , 1985, Cell and Tissue Research.
[57] N. Strausfeld,et al. Sign-conserving amacrine neurons in the fly's external plexiform layer , 2005, Visual Neuroscience.