A study of the impact of long range interactions on the reactivity of N + N2 using the Grid Empowered Molecular Simulator GEMS

The Potential Energy Surface (PES) of the N + N 2 atom diatom system has been reformulated using the Largest Angle Generalisation of the Rotating Bond Order (LAGROBO) functional form for interpolating ab initio points in the short distance region and using a modified Lennard-Jones functional form to model the van der Waals interaction at long range. On the proposed surface extended quantum calculations have been performed using the Dynamics module of the Grid Empowered Molecular Simulator (GEMS) on the European Grid platform. The values of the calculated thermal rate coefficients fairly well reproduce the experimental results.

[1]  Carlo Petrongolo,et al.  MRD-CI quartet potential surfaces for the collinear reactions N(4Su)+N2(X1Σg+, A3Σu+, and B3Πg) , 1989 .

[2]  Schahram Dustdar,et al.  A survey on web services composition , 2005, Int. J. Web Grid Serv..

[3]  A. Lifshitz,et al.  Kinetics of the Homogeneous Exchange Reaction 12C18O+13C16O⇆13C18O+12C16O. Single‐Pulse Shock‐Tube Studies , 1969 .

[4]  Antonio Laganà,et al.  Potential energy representations in the bond order space , 1992 .

[5]  Antonio Laganà,et al.  The effect of N+N2 collisions on the non-equilibrium vibrational distributions of nitrogen under reentry conditions , 1994 .

[6]  Antonio Laganà,et al.  The largest angle generalization of the rotating bond order potential: The H+H2 and N+N2 reactions , 1995 .

[7]  Antonio Laganà,et al.  Deactivation dynamics of vibrationally excited nitrogen molecules by nitrogen atoms. Effects on non-equilibrium vibrational distribution and dissociation rates of nitrogen under electrical discharges , 1992 .

[8]  A. Lifshitz,et al.  Kinetics of the Homogeneous Exchange Reaction: 14–14N2+15–15N2⇋214— 15N2. Single‐Pulse Shock‐Tube Studies , 1967 .

[9]  Antonio Laganà,et al.  A priori modeling of chemical reactions on a grid based virtual laboratory , 2010 .

[10]  Fernando Pirani,et al.  Beyond the Lennard-Jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. , 2008, Physical chemistry chemical physics : PCCP.

[11]  N. Faginas Lago,et al.  Thermal rate coefficients in collinear versus bent transition state reactions: the N+N2 case study , 2008 .

[12]  Domenico Talia,et al.  Grid services: principles, implementations and use , 2005, Int. J. Web Grid Serv..

[13]  Fernando Pirani,et al.  Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations , 1991 .

[14]  Joel M. Bowman,et al.  Approximate Time Independent Methods for Polyatomic Reactions , 2000 .

[15]  Antonio Laganà,et al.  A Comparison of the Isotope Effect for the N + N2 Reaction Calculated on Two Potential Energy Surfaces , 2008, ICCSA.

[16]  A. Varandas,et al.  Accurate double many-body expansion potential energy surface for N3((4)A'') from correlation scaled ab initio energies with extrapolation to the complete basis set limit. , 2009, The journal of physical chemistry. A.

[17]  Ernesto Garcia,et al.  Modeling the global potential energy surface of the N + N2 reaction from ab initio data. , 2008, Physical chemistry chemical physics : PCCP.

[18]  F. Pirani,et al.  A bond-bond description of the intermolecular interaction energy: the case of weakly bound N(2)-H(2) and N(2)-N(2) complexes. , 2008, Physical chemistry chemical physics : PCCP.

[19]  G. A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. Theory , 1987 .

[20]  Eugene Levin,et al.  Effective Potential Energies and Transport Cross Sections for Atom-Molecule Interactions of Nitrogen and Nitrogen , 2001 .

[21]  Antonio Laganà,et al.  A rotating bond order formulation of the atom diatom potential energy surface , 1991 .

[22]  D. Manolopoulos,et al.  ABC: a quantum reactive scattering program , 2000 .

[23]  Antonio Laganà,et al.  Deactivation of vibrationally excited nitrogen molecules by collision with nitrogen atoms , 1987 .

[24]  Fernando Pirani,et al.  Range, strength and anisotropy of intermolecular forces in atom–molecule systems: an atom–bond pairwise additivity approach , 2001 .

[25]  Richard K. Lyon Search for the N–N2 Exchange Reaction , 1972 .

[26]  Joel M. Bowman,et al.  Reduced dimensionality theory of quantum reactive scattering , 1991 .

[27]  Attila Tajti,et al.  The problem of interoperability: A common data format for quantum chemistry codes , 2007 .

[28]  Harry Partridge,et al.  Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface , 2003 .

[29]  G. Schatz Quantum reactive scattering using hyperspherical coordinates: Results for H+H2 and Cl+HCl , 1988 .

[30]  R. A. Back,et al.  THE REACTIONS OF ACTIVE NITROGEN WITH N15O AND N215 , 1962 .

[31]  Antonio Laganà,et al.  GriF: A Grid framework for a Web Service approach to reactive scattering , 2010, Comput. Phys. Commun..

[32]  Antonio Laganà,et al.  On the structuring of a molecular simulator as a grid service , 2009 .

[33]  Carlo Petrongolo,et al.  MRD-CI ground state geometry and vertical spectrum of N3 , 1988 .

[34]  Ernesto Garcia,et al.  A comparison of the quantum state-specific efficiency of N + N2 reaction computed on different potential energy surfaces. , 2009, Physical chemistry chemical physics : PCCP.

[35]  Antonio Laganà,et al.  SIMBEX: a portal for the a priori simulation of crossed beam experiments , 2004, Future Gener. Comput. Syst..

[36]  Fernando Pirani,et al.  On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres , 2007 .

[37]  Osvaldo Gervasi,et al.  On the Structuring of the Computational Chemistry Virtual Organization COMPCHEM , 2006, ICCSA.