Power-constrained CMOS scaling limits

The scaling of CMOS technology has progressed rapidly for three decades, but may soon come to an end because of power-dissipation constraints. The primary problem is static power dissipation, which is caused by leakage currents arising from quantum tunneling and thermal excitations. The details of these effects, along with other scaling issues, are discussed in the context of their dependence on application. On the basis of these considerations, the limits of CMOS scaling are estimated for various application scenarios.

[1]  R. Fair,et al.  Zener and avalanche breakdown in As-implanted low-voltage Si n-p junctions , 1976, IEEE Transactions on Electron Devices.

[2]  R. Pease,et al.  High-performance heat sinking for VLSI , 1981, IEEE Electron Device Letters.

[3]  J. Stork,et al.  Tunneling in base-emitter junctions , 1983, IEEE Transactions on Electron Devices.

[4]  M. V. Fischetti,et al.  Monte Carlo simulation of a 30 nm dual-gate MOSFET: how short can Si go? , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[5]  K. F. Lee,et al.  Scaling the Si MOSFET: from bulk to SOI to bulk , 1992 .

[6]  Christer Svensson,et al.  Trading speed for low power by choice of supply and threshold voltages , 1993 .

[7]  H. Wong,et al.  Three-dimensional "atomistic" simulation of discrete random dopant distribution effects in sub-0.1 /spl mu/m MOSFET's , 1993, Proceedings of IEEE International Electron Devices Meeting.

[8]  J. Burr,et al.  Optimization of quarter micron MOSFETs for low voltage/low power applications , 1995, Proceedings of International Electron Devices Meeting.

[9]  Robert H. Dennard,et al.  CMOS scaling for high performance and low power-the next ten years , 1995, Proc. IEEE.

[10]  Scott K. Reynolds,et al.  Supply and threshold voltage optimization for low power design , 1997, Proceedings of 1997 International Symposium on Low Power Electronics and Design.

[11]  Y. Taur,et al.  Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's , 1997, IEEE Electron Device Letters.

[12]  D. Frank,et al.  Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET's at the 25 nm channel length generation , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[13]  D. Frank,et al.  Generalized scale length for two-dimensional effects in MOSFETs , 1998, IEEE Electron Device Letters.

[14]  D. Frank,et al.  25 nm CMOS design considerations , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[15]  D. Frank,et al.  Discrete random dopant distribution effects in nanometer-scale MOSFETs , 1998 .

[16]  D. Frank,et al.  Monte Carlo modeling of threshold variation due to dopant fluctuations , 1999, 1999 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.99CH36325).

[17]  H. Kawaura Direct source-drain tunneling current in subthreshold region of sub-10-nm gate EJ-MOSFETs , 1999 .

[18]  David J. Frank,et al.  Nanoscale CMOS : Special issue on quantum devices and their applications , 1999 .

[19]  David J. Frank,et al.  Nanoscale CMOS , 1999, Proc. IEEE.

[20]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[21]  D. Frank,et al.  Simulation of stochastic doping effects in Si MOSFETs , 2000, 7th International Workshop on Computational Electronics. Book of Abstracts. IWCE (Cat. No.00EX427).

[22]  Y. Naveh,et al.  Modeling of 10-nm-scale ballistic MOSFET's , 2000, IEEE Electron Device Letters.

[23]  Chenming Hu,et al.  Sub-20 nm CMOS FinFET technologies , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[24]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.