Lateral prefrontal damage affects processing selection but not attention switching.

[1]  D. Stuss,et al.  Stroop performance in focal lesion patients: dissociation of processes and frontal lobe lesion location , 2001, Neuropsychologia.

[2]  M. Botvinick,et al.  Conflict monitoring and cognitive control. , 2001, Psychological review.

[3]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[4]  D. Meyer,et al.  Executive control of cognitive processes in task switching. , 2001, Journal of experimental psychology. Human perception and performance.

[5]  R. Poldrack,et al.  Neural Activation During Response Competition , 2000, Journal of Cognitive Neuroscience.

[6]  Arthur F. Kramer,et al.  fMRI Studies of Stroop Tasks Reveal Unique Roles of Anterior and Posterior Brain Systems in Attentional Selection , 2000, Journal of Cognitive Neuroscience.

[7]  N. Cohen,et al.  Prefrontal regions play a predominant role in imposing an attentional 'set': evidence from fMRI. , 2000, Brain research. Cognitive brain research.

[8]  Jonathan D. Cohen,et al.  Anterior cingulate and prefrontal cortex: who's in control? , 2000, Nature Neuroscience.

[9]  R. Knight,et al.  Prefrontal–cingulate interactions in action monitoring , 2000, Nature Neuroscience.

[10]  P. Goldman-Rakic,et al.  Functional neuroanatomy of executive processes involved in dual-task performance. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J D Gabrieli,et al.  A resource model of the neural basis of executive working memory. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Corbetta,et al.  Voluntary orienting is dissociated from target detection in human posterior parietal cortex , 2000, Nature Neuroscience.

[13]  D. Gitelman,et al.  Covert Visual Spatial Orienting and Saccades: Overlapping Neural Systems , 2000, NeuroImage.

[14]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[15]  T. Robbins,et al.  Contrasting Cortical and Subcortical Activations Produced by Attentional-Set Shifting and Reversal Learning in Humans , 2000, Journal of Cognitive Neuroscience.

[16]  Joel R. Meyer,et al.  A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. , 1999, Brain : a journal of neurology.

[17]  Stephen M. Rao,et al.  Neural Basis of Endogenous and Exogenous Spatial Orienting: A Functional MRI Study , 1999, Journal of Cognitive Neuroscience.

[18]  J. Jonides,et al.  Inhibition in verbal working memory revealed by brain activation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  T. Robbins,et al.  Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson's disease. , 1998, Brain : a journal of neurology.

[20]  S. Keele,et al.  Toward a Functional Analysis of the Basal Ganglia , 1998, Journal of Cognitive Neuroscience.

[21]  X. Hu,et al.  4 T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions. , 1998, Journal of neurophysiology.

[22]  Attention! , 1998, Trends in Cognitive Sciences.

[23]  V. Bruce Unsolved mysteries of the mind : tutorial essays in cognition , 1998 .

[24]  S. Rauch,et al.  The counting stroop: An interference task specialized for functional neuroimaging—validation study with functional MRI , 1998, Human brain mapping.

[25]  S. Kornblum,et al.  Isolation of Specific Interference Processing in the Stroop Task: PET Activation Studies , 1997, NeuroImage.

[26]  M. D’Esposito,et al.  The neural basis of the central executive system of working memory , 1995, Nature.

[27]  Jordan Grafman,et al.  The role of prefrontal regions in the Stroop task , 1995, Neuropsychologia.

[28]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[29]  Sylvan Kornblum,et al.  Changes in medial cortical blood flow with a stimulus-response compatibility task , 1994, Neuropsychologia.

[30]  S Kornblum,et al.  The way irrelevant dimensions are processed depends on what they overlap with: The case of Stroop- and Simon-like stimuli , 1994, Psychological research.

[31]  D. Meyer,et al.  A Neural System for Error Detection and Compensation , 1993 .

[32]  T. Robbins,et al.  Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson's disease. , 1993, Brain : a journal of neurology.

[33]  M. Corbetta,et al.  A PET study of visuospatial attention , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  James L. McClelland,et al.  A parallel distributed processing approach to automaticity. , 1992, The American journal of psychology.

[35]  J. Cohen,et al.  Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. , 1992, Psychological review.

[36]  T. Robbins,et al.  Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man , 1991, Neuropsychologia.

[37]  Colin M. Macleod Half a century of research on the Stroop effect: an integrative review. , 1991, Psychological bulletin.

[38]  James L. McClelland,et al.  On the control of automatic processes: a parallel distributed processing account of the Stroop effect. , 1990, Psychological review.

[39]  M. Raichle,et al.  The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Robert T. Knight,et al.  Prefrontal cortex gating of auditory transmission in humans , 1989, Brain Research.

[41]  T. Shallice From Neuropsychology to Mental Structure , 1988 .

[42]  D. Stuss,et al.  The Frontal Lobes , 1986 .

[43]  G. Logan Executive control of thought and action , 1985 .

[44]  C. Eriksen,et al.  A psychophysiological investigation of the continuous flow model of human information processing. , 1985, Journal of experimental psychology. Human perception and performance.

[45]  F. J. Friedrich,et al.  Effects of parietal injury on covert orienting of attention , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  James E. Skinner,et al.  Central Gating Mechanisms That Regulate Event-Related Potentials and Behavior , 1984 .

[47]  M. Posner,et al.  Attention and the detection of signals. , 1980, Journal of experimental psychology.

[48]  Gert Pfurtscheller,et al.  Progress in clinical neurophysiology. Vol. 1. Attention, voluntary contraction and event-related cerebral potentials: J.E. Desmedt (Ed.) (Karger, Basel, 256 p., 95 figs., 6 tab., 1977, DM 98.—) , 1979 .

[49]  J. Desmedt Attention, Voluntary Contraction and Event-Related Cerebral Potentials , 1977 .

[50]  E. Perret The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. , 1974, Neuropsychologia.

[51]  C. Eriksen,et al.  Effects of noise letters upon the identification of a target letter in a nonsearch task , 1974 .

[52]  Saul Sternberg,et al.  The discovery of processing stages: Extensions of Donders' method , 1969 .

[53]  B. Milner Effects of Different Brain Lesions on Card Sorting: The Role of the Frontal Lobes , 1963 .