Crystallization behavior and microstructure of barium borosilicate glass–ceramics

[1]  Huidong Li,et al.  Structure and chemical durability of barium borosilicate glass–ceramics containing zirconolite and titanite crystalline phases , 2015 .

[2]  Hui Yang,et al.  Crystallization and microstructure of CaO-MgO-Al 2 O 3 -SiO 2 glass-ceramics containing complex nucleation agents , 2014 .

[3]  Zhihong Yang,et al.  Effect of CaO/SiO2 ratio on the preparation and crystallization of glass-ceramics from copper slag , 2014 .

[4]  Hang Yang,et al.  Incorporation of cerium in zirconolite–sphene Synroc , 2013 .

[5]  Zhen Li,et al.  Crystallization behavior and properties of K2O–CaO–Al2O3–SiO2 glass-ceramics , 2013 .

[6]  E. Vance,et al.  Pyrochlore based glass-ceramics for the immobilization of actinide-rich nuclear wastes: From concept to reality , 2013 .

[7]  D. Suvorov,et al.  Effect of a TiO2 Nucleating Agent on the Nucleation and Crystallization Behavior of MgO–B2O3–SiO2 Glass , 2012 .

[8]  A. Mallik,et al.  Influence of barium oxide on the crystallization, microstructure and mechanical properties of potassium fluorophlogopite glass–ceramics , 2012 .

[9]  D. Caurant,et al.  Glass-ceramic nuclear waste forms obtained by crystallization of SiO2-Al2O3-CaO-ZrO2-TiO2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of the crystallization from the surface , 2010 .

[10]  Huijun Li,et al.  Zirconolite-rich titanate ceramics for immobilisation of actinides – Waste form/HIP can interactions and chemical durability , 2009 .

[11]  V. Marghussian,et al.  Crystallization behaviour, microstructure and mechanical properties of cordierite–mullite glass ceramics , 2009 .

[12]  Hanning Xiao,et al.  Influence of nucleation agents on crystallization and machinability of mica glass–ceramics , 2009 .

[13]  V. Marghussian,et al.  SiO2–PbO–CaO–ZrO2–TiO2–(B2O3–K2O), A New Zirconolite Glass–Ceramic System: Crystallization Behavior and Microstructure Evaluation , 2009 .

[14]  M. Malek,et al.  Composite wasteform based on SiO2–PbO–CaO–ZrO2–TiO2–(B2O3–K2O) parent glass with zircon as the second component , 2009 .

[15]  A. K. Tyagi,et al.  Role of Sulfate in Structural Modifications of Sodium Barium Borosilicate Glasses Developed for Nuclear Waste Immobilization , 2008 .

[16]  A. K. Tyagi,et al.  Borosilicate glasses modified with organic ligands: a new selective approach for the removal of uranyl ion. , 2008, Journal of hazardous materials.

[17]  D. Neuville,et al.  Sulfur behavior in silicate glasses and melts: Implications for sulfate incorporation in nuclear waste glasses as a function of alkali cation and V2O5 content , 2007 .

[18]  N. Baffier,et al.  Crystallization of neodymium-rich phases in silicate glasses developed for nuclear waste immobilization , 2006 .

[19]  J. Rincón,et al.  Kinetic of mullite formation from a porcelain stoneware body for tiles production , 2006 .

[20]  B. Chiou,et al.  Low temperature sintering and crystallisation behaviour of low loss anorthite-based glass-ceramics , 2003 .

[21]  N. Baffier,et al.  Crystallization study of (TiO2, ZrO2)-rich SiO2-Al2O3-CaO glasses Part II Surface and internal crystallization processes investigated by differential thermal analysis (DTA) , 2003 .

[22]  J. Heo,et al.  Nucleation and crystallization kinetics of glass derived from incinerator fly ash waste , 2002 .

[23]  D. Day,et al.  Surface and Internal Crystallization in Glasses as Determined by Differential Thermal Analysis , 1996 .

[24]  D. Day,et al.  Crystallization Kinetics of a Lithia–Silica Glass: Effect of Sample Characteristics and Thermal Analysis Measurement Techniques , 1991 .

[25]  Rodney C. Ewing,et al.  Radioactive Waste Forms for the Future , 1988 .

[26]  J. D. Purson,et al.  Actinide Valences in Borosilicate Glass , 1985 .