A Survey for Stochastic Decomposition in Vacation Queues

The study of vacation queue started in the 1970s. Up to now, it has made abundant achievements, formed a theoretical framework with stochastic decomposition as the core, and has been applied to many fields. This paper gives a comprehensive overview of the research results and analysis methods of vacation queue, including its applications in the communication networks.

[1]  Carl M. Harris,et al.  Fundamentals of queueing theory , 1975 .

[2]  Dieter Fiems,et al.  Discrete-time queueing systems with vacations governed by geometrically distributed timers , 2001 .

[3]  Indrajit Bardhan Diffusion approximations for GI/M/s queues with service interruptions , 1993, Oper. Res. Lett..

[4]  Tony T. Lee,et al.  M/G/1/N Queue with Vacation Time and Exhaustive Service Discipline , 1984, Oper. Res..

[5]  Sid Browne,et al.  Parallel Service with Vacations , 1995, Oper. Res..

[6]  G. M. Jenkins,et al.  Stochastic Service Systems. , 1964 .

[7]  Yinghui Tang,et al.  Steady state analysis and computation of the GI[x]/Mb/1/L queue with multiple working vacations and partial batch rejection , 2009, Comput. Ind. Eng..

[8]  Julian Keilson,et al.  The backlog and depletion-time process for M/G/1 vacation models with exhaustive service discipline , 1988, Journal of Applied Probability.

[9]  M. Yadin,et al.  Queueing Systems with a Removable Service Station , 1963 .

[10]  Julian Keilson,et al.  Oscillating random walk models for GI / G /1 vacation systems with Bernoulli schedules , 1986 .

[11]  Naishuo Tian,et al.  The M/M/1 queue with single working vacation and set-up times , 2009 .

[12]  Wuyi Yue,et al.  Modeling and performance evaluation for the sleep mode in the IEEE 802.16e wireless networks , 2008, 2008 11th IEEE Singapore International Conference on Communication Systems.

[13]  Veena Goswami,et al.  Analysis Of Gi/M(N)/1/N Queue With Single Working Vacation And Vacation Interruption , 2013 .

[14]  S. Anggraeni,et al.  Penerapan metode Teams Games Tournament (TGT) untuk meningkatkan kemampuan membaca permulaan siswa kelas I sekolah dasar , 2019 .

[15]  Panagiotis Kasteridis,et al.  On the d-policy for the m/g/1 queue , 2001 .

[16]  Tian Nai-shuo Performance evaluation of connection oriented user initiated session based on discrete time queueing , 2005 .

[17]  Quan-Lin Li,et al.  Constructive Computation in Stochastic Models with Applications , 2010 .

[18]  Naishuo Tian,et al.  The N threshold policy for the GI/M/1 queue , 2004, Oper. Res. Lett..

[19]  Kin K. Leung,et al.  Analysis of a discrete-time queueing system with time-limited service , 1994, Queueing Syst. Theory Appl..

[20]  Jacques Teghem,et al.  Control of the service process in a queueing system , 1986 .

[21]  J. Dshalalow,et al.  A bulk input queueing system with batch gated service and multiple vacation policy , 2001 .

[22]  Naishuo Tian,et al.  Analysis of Queueing Systems with Synchronous Single Vacation for Some Servers , 2003, Queueing Syst. Theory Appl..

[23]  Wolfgang Bischof,et al.  Analysis of M/G/1-Queues with Setup Times and Vacations under Six Different Service Disciplines , 2001, Queueing Syst. Theory Appl..

[24]  Hideaki Takagi,et al.  M/G/1 queue with multiple working vacations , 2006, Perform. Evaluation.

[25]  Naishuo Tian,et al.  Discrete Time Geo/G/1 Queue with Multiple Adaptive Vacations , 2001, Queueing Syst. Theory Appl..

[26]  Tian Nai-shuo Performance evaluation of virtual channel switching system based on discrete time queue , 2004 .

[27]  Herwig Bruneel,et al.  Analysis of Discrete-Time Buffers with One Single Output Channel Subjected to a General Interruption Process , 1984, Performance.

[28]  Naishuo Tian,et al.  Performance analysis of a GI/M/1 queue with single working vacation , 2011, Appl. Math. Comput..

[29]  Attahiru Sule Alfa,et al.  Vacation models in discrete time , 2003, Queueing Syst. Theory Appl..

[30]  L. D. Servi,et al.  The busy period of the migi1 vacation model with a bernoulli schedule , 1988 .

[31]  J. Keilson,et al.  Dynamics of the M/G/1 Vacation Model , 1987, Oper. Res..

[32]  P. J. Kuehn,et al.  Multiqueue systems with nonexhaustive cyclic service , 1979, The Bell System Technical Journal.

[33]  William G. Marchal,et al.  State Dependence in M/G/1 Server-Vacation Models , 1988, Oper. Res..

[34]  Quanlin Li,et al.  Reliability Analysis of the Retrial Queue with Server Breakdowns and Repairs , 2001, Queueing Syst. Theory Appl..

[35]  Raymond L. Pickholtz,et al.  Guest Editorial: Computer Communications-An Emerging Discipline , 1977, IEEE Trans. Commun..

[36]  Huan Li,et al.  On M/G/1 queues with exhaustive service and generalized vacations , 1995, Advances in Applied Probability.

[37]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[38]  S. W. Fuhrmann Technical Note - A Note on the M/G/1 Queue with Server Vacations , 1984, Oper. Res..

[39]  Yutaka Baba,et al.  Analysis of a GI/M/1 queue with multiple working vacations , 2005, Oper. Res. Lett..

[40]  Dieter Fiems,et al.  Analysis of a Discrete-Time Queueing System with Timed Vacations , 2002, Queueing Syst. Theory Appl..

[41]  Nobuko Igaki Exponential two server queue withN-policy and general vacations , 1992, Queueing Syst. Theory Appl..

[42]  Yansheng Liu,et al.  Multiple solutions of periodic boundary value problems for first order differential equations , 2007, Comput. Math. Appl..

[43]  Ho Woo Lee,et al.  ANALYSIS OF THE M(X)/G/1 QUEUE WITH N-POLICY AND MULTIPLE VACATIONS , 1994 .

[44]  Naishuo Tian,et al.  Vacation Queueing Models: Theory and Applications (International Series in Operations Research & Management Science) , 2006 .

[45]  Naishuo Tian,et al.  Stochastic decompositions in the M/M/1 queue with working vacations , 2007, Oper. Res. Lett..

[46]  Yan Wang,et al.  Modeling and performance evaluation of the sleep mode in the IEEE 802.16e wireless networks with self-similar traffic , 2009 .

[47]  Sanjay K. Bose,et al.  An Introduction to Queueing Systems , 2002, Springer US.

[48]  N Tian THE GI/M/1 QUEUE WITH PHASE TYPE VACATIONS , 1993 .

[49]  Naishuo Tian,et al.  Analysis of the M/G/1 queue with exponentially working vacations—a matrix analytic approach , 2009, Queueing Syst. Theory Appl..

[50]  Herwig Bruneel,et al.  Discrete-time models for communication systems including ATM , 1992 .

[51]  Zhe George Zhang,et al.  Optimal Two-Threshold Policies in an M/G/1 Queue With Two Vacation Types , 1997, Perform. Evaluation.

[52]  Kyung C. Chae,et al.  The GI/M/1 queue and the GI/Geo/1 queue both with single working vacation , 2009, Perform. Evaluation.

[53]  Mahbub Hassan,et al.  A Delayed Vacation Model of an M/G/1 Queue with Setup Time and Its Application to SVCC-Based ATM Networks (Special Issue on Telecommunications Network Planning and Design) , 1997 .

[54]  Leslie D. Servi,et al.  M/M/1 queues with working vacations (M/M/1/WV) , 2002, Perform. Evaluation.

[55]  Leslie D. Servi Average Delay Approximation of M/G/1 Cyclic Service Queues with Bernoulli Schedules , 1986, IEEE J. Sel. Areas Commun..

[56]  Dieter Fiems,et al.  The combined gated-exhaustive vacation system in discrete time , 2002, Perform. Evaluation.

[57]  Bharat T. Doshi Conditional and unconditional distributions forM/G/1 type queues with server vacations , 1990, Queueing Syst. Theory Appl..

[58]  N Tian THE GI/M/1 QUEUEING SYSTEM WITH SINGLE EXPONENTIAL VACATION , 1993 .

[59]  Jian-qin Zhou Procreating tiles of double commutative-step digraphs , 2008 .

[60]  Naishuo Tian,et al.  A Note On GI/M/1 Queues With Phase-Type Setup Times Or Server Vacations , 2003 .

[61]  Sung Ho Choi,et al.  An M/G/1 queue with multiple types of feedback, gated vacations and FCFS policy , 2003, Comput. Oper. Res..

[62]  Wu Yanhong,et al.  Reliability analysis of a multistate system with a replaceable repair facility , 1988 .

[63]  V. Balachandran,et al.  Comment on “Solving the 'Marketing Mix' Problem using Geometric Programming” , 1975 .

[64]  Hideaki Takagi,et al.  Queueing analysis: a foundation of performance evaluation , 1993 .

[65]  Tetsuya Takine,et al.  Analysis of a Discrete-Time Queue with Gated Priority , 1995, Perform. Evaluation.

[66]  Wei Sun,et al.  Equilibrium and optimal balking strategies of customers in Markovian queues with multiple vacations and N-policy , 2016 .

[67]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[68]  Tools for Performance Analysis,et al.  Modelling techniques and tools for performance analysis '85 : proceedings of the International Conference on Modelling Techniques and Tools for Performance Analysis, Sophia Antipolis, France, 5-7 June, 1985 , 1986 .

[69]  Thomas Yew Sing Lee,et al.  Analysis of infinite servers polling systems with correlated input process and state dependent vacations , 1999, Eur. J. Oper. Res..

[70]  Herwig Bruneel,et al.  Analysis of an infinite buffer system with random server interruptions, , 1984, Comput. Oper. Res..

[71]  N Tian THE M/M/c QUEUE WITH SYNCHRONOUS TIMES OF PHASE TYPE SET-UP , 1997 .

[72]  B. Krishna Kumar,et al.  The M/G/1 retrial queue with Bernoulli schedules and general retrial times , 2002 .

[73]  H. M. Ghafir,et al.  Performance analysis of a multiple-access ring network , 1993, IEEE Trans. Commun..

[74]  Jesús R. Artalejo Some results on the M/G/1 queue with N-policy , 1998 .

[75]  Marcel F. Neuts,et al.  Structured Stochastic Matrices of M/G/1 Type and Their Applications , 1989 .

[76]  Uri Yechiali,et al.  AnM/M/s Queue with Servers''Vacations , 1976 .

[77]  Kailash C. Madan,et al.  A two server queue with Bernoulli schedules and a single vacation policy , 2003, Appl. Math. Comput..

[78]  Naishuo Tian,et al.  The M/M/1 queue with working vacations and vacation interruptions , 2007 .

[79]  Paul E. Wright,et al.  GATED, EXHAUSTIVE, PARALLEL SERVICE , 1992 .

[80]  Hideaki Takagi New Message Waiting Time in a Symmetric Polling System , 1984, Performance.

[81]  Zhisheng Niu,et al.  Performance Evaluation of SVC-Based IP-Over-ATM Networks , 1998 .

[82]  Bong D. Choi,et al.  The M/G/1 retrial queue with bernoulli schedule , 1990, Queueing Syst. Theory Appl..

[83]  Zaiming Liu,et al.  An M/G/1 queue with single working vacation and vacation interruption under Bernoulli schedule , 2013 .

[84]  Bharat T. Doshi,et al.  A note on stochastic decomposition in a GI/G/1 queue with vacations or set-up times , 1985, Journal of Applied Probability.

[85]  Naishuo Tian,et al.  The M/M/1 Queue with Single Working Vacation , 2008 .

[86]  B. T. Doshi,et al.  Queueing systems with vacations — A survey , 1986, Queueing Syst. Theory Appl..

[87]  Tian Nai-shuo Performance of admission control for multi-traffic in wireless communication network base on discrete time queue , 2006 .

[88]  Ralph L. Disney,et al.  TheM/GI/1 Bernoulli feedback queue with vacations , 1991, Queueing Syst. Theory Appl..

[89]  Tian Nai-shuo Modeling of Base Station in Wireless Networks with Finite User Population Discrete Time Delay and Loss System , 2007 .

[90]  Jin Dong Kim,et al.  The Geo/G/1 Queue with Disasters and Multiple Working Vacations , 2007 .

[91]  Hideaki Takagi Time-dependent process of M/G/1 vacation models with exhaustive service , 1992 .

[92]  Zhe George Zhang,et al.  Matrix Analytic Method and Working Vacation Queues - A Survey , 2009 .

[93]  Xiuli Chao,et al.  Analysis of multi-server queues with station and server vacations , 1998, Eur. J. Oper. Res..

[94]  Naishuo Tian,et al.  The Discrete-Time GI/Geo/1 Queue with Multiple Vacations , 2002, Queueing Syst. Theory Appl..

[95]  Jau-Chuan Ke,et al.  The Analysis of a General Input Queue with N Policy and Exponential Vacations , 2003, Queueing Syst. Theory Appl..

[96]  Jesús R. Artalejo,et al.  On the M/G/1 queue with D-policy , 2001 .

[97]  Naishuo Tian,et al.  Vacation Queueing Models Theory and Applications , 2006 .

[98]  Naishuo Tian,et al.  The discrete time Geom/Geom/1 queue with multiple working vacations , 2008 .

[99]  N. Tian,et al.  Conditional Stochastic Decompositions in the M/M/c Queue with Server Vacations , 1999 .

[100]  Kin K. Leung,et al.  A single-server queue with vacations and non-gated time-limited service , 1990, Proceedings. IEEE INFOCOM '90: Ninth Annual Joint Conference of the IEEE Computer and Communications Societies@m_The Multiple Facets of Integration.

[101]  Fumiaki Machihara,et al.  A G/SM/1 queue with vacations depending on service times , 1995 .

[102]  Ushio Sumita,et al.  Analysis of channel and disk subsystems in computer systems , 1988, Queueing Syst. Theory Appl..

[103]  Naishuo Tian,et al.  Performance analysis of GI/M/1 queue with working vacations and vacation interruption , 2008 .

[104]  Uri Yechiali,et al.  Gated-type polling systems with walking and switch-in times , 1994 .

[105]  Chengxuan Cao,et al.  The GI/M/1 queue with exponential vacations , 1989, Queueing Syst. Theory Appl..

[106]  Zhisheng Niu,et al.  A finite‐capacity queue with exhaustive vacation/close‐down/setup times and Markovian arrival processes , 1999, Queueing Syst. Theory Appl..

[107]  Naishuo Tian,et al.  A two threshold vacation policy in multiserver queueing systems , 2006, Eur. J. Oper. Res..

[108]  S. P. Mukherjee,et al.  GI/M/1 Queue with Server Vacations , 1990 .

[109]  U. C. Gupta,et al.  On the finite-buffer bulk-service queue with general independent arrivals: GI/M[b]/1/N , 1999, Oper. Res. Lett..

[110]  T Naishou The Steady Theory for GI/M/c Queue with Synchronous Vacations , 2001 .

[111]  Eitan Altman Stochastic Recursive Equations with Applications to Queues with Dependent Vacations , 2002, Ann. Oper. Res..

[112]  Zhengting Hou,et al.  Performance analysis of MAP/G/1 queue with working vacations and vacation interruption , 2011 .

[113]  Surendra M. Gupta,et al.  The Finite Capacity GI/M/1 Queue with Server Vacations , 1996 .

[114]  Theodore E. Tedijanto,et al.  Exact Results for the Cyclic-Service Queue with a Bernoulli Schedule , 1990, Perform. Evaluation.

[115]  Tony T. Lee,et al.  M/G/1/N Queue with Vacation Time and Limited Service Discipline , 1989, Perform. Evaluation.

[116]  Yutaka Baba,et al.  On the Mx/G /1 queue with vacation time , 1986 .

[117]  U. C. Gupta,et al.  On the GI/M/1/N queue with multiple working vacations—analytic analysis and computation , 2007 .

[118]  Zhe George Zhang,et al.  Analysis of multi-server queue with a single vacation (e, d)-policy , 2006, Perform. Evaluation.

[119]  G. F. Newell,et al.  Introduction to the Theory of Queues. , 1963 .

[120]  Daniel P. Heyman,et al.  Stochastic models in operations research , 1982 .

[121]  Daniel P. Heyman,et al.  The T-Policy for the M/G/1 Queue , 1977 .

[122]  Attahiru Sule Alfa,et al.  A discrete MAP/PH/1 queue with vacations and exhaustive time-limited service , 1995, Oper. Res. Lett..

[123]  Robert B. Cooper,et al.  Stochastic Decompositions in the M/G/1 Queue with Generalized Vacations , 1985, Oper. Res..

[124]  Julian Keilson,et al.  Blocking Probability for M/G/1 Vacation Systems with Occupancy Level Dependent Schedules , 1989, Oper. Res..

[125]  Hisashi Kobayashi,et al.  Queueing Models for Computer Communications System Analysis , 1977, IEEE Trans. Commun..

[126]  Leonard Kleinrock,et al.  A Queue with Starter and a Queue with Vacations: Delay Analysis by Decomposition , 1986, Oper. Res..

[127]  Mandyam M. Srinivasan,et al.  Control policies for the M X /g/ 1 queueing system , 1989 .

[128]  Naishuo Tian,et al.  Equilibrium threshold strategies in observable queueing systems with setup/closedown times , 2010, Central Eur. J. Oper. Res..

[129]  Naishuo Tian,et al.  The discrete-time GI/Geo/1 queue with working vacations and vacation interruption , 2007, Appl. Math. Comput..

[130]  Naishuo Tian,et al.  Steady-state analysis of a discrete-time batch arrival queue with working vacations , 2010, Perform. Evaluation.

[131]  Eitan Altman,et al.  On Elevator polling with globally gated regime , 1992, Queueing Syst. Theory Appl..

[132]  U. Yechiali,et al.  Utilization of idle time in an M/G/1 queueing system Management Science 22 , 1975 .

[133]  Naishuo Tian,et al.  Stationary Distributions of GI/M/c Queue with PH Type Vacations , 2003, Queueing Syst. Theory Appl..

[134]  Alexander Dukhovny Vacations in GIX/MY/1 systems and Riemann boundary value problems , 1997, Queueing Syst. Theory Appl..

[135]  Vaidyanathan Ramaswami,et al.  Introduction to Matrix Analytic Methods in Stochastic Modeling , 1999, ASA-SIAM Series on Statistics and Applied Mathematics.

[136]  B. Vinod,et al.  Exponential Queues with Server Vacations , 1986 .