A full multigrid method for nonlinear eigenvalue problems

We introduce a type of full multigrid method for the nonlinear eigenvalue problem. The main idea is to transform the solution of the nonlinear eigenvalue problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and nonlinear eigenvalue problems on the coarsest finite element space. The linearized boundary value problems are solved by some multigrid iterations. Besides the multigrid iteration, all other efficient iteration methods for solving boundary value problems can serve as the linear problem solver. We prove that the computational work of this new scheme is truly optimal, the same as solving the linear corresponding boundary value problem. In this case, this type of iteration scheme certainly improves the overfull efficiency of solving nonlinear eigenvalue problems. Some numerical experiments are presented to validate the efficiency of the new method.

[1]  S. McCormick,et al.  Multigrid Methods for Differential Eigenproblems , 1983 .

[2]  Randolph E. Bank,et al.  An optimal order process for solving finite element equations , 1981 .

[3]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[4]  Jinchao Xu,et al.  Local and Parallel Finite Element Algorithms for Eigenvalue Problems , 2002 .

[5]  Hehu Xie,et al.  A type of multilevel method for the Steklov eigenvalue problem , 2014 .

[6]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[7]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[8]  Aihui Zhou,et al.  Numerical analysis of finite dimensional approximations of Kohn–Sham models , 2011, Adv. Comput. Math..

[9]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[10]  Hamilton-Jacobi Equations,et al.  Multigrid Methods for , 2011 .

[11]  Jinchao Xu A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .

[12]  James H. Bramble,et al.  The analysis of multigrid methods , 2000 .

[13]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[14]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[15]  Hehu Xie,et al.  A full multigrid method for eigenvalue problems , 2014, J. Comput. Phys..

[16]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[17]  L. Ridgway Scott,et al.  Higher-dimensional nonnested multigrid methods , 1992 .

[18]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[19]  Hehu Xie A type of multi-level correction scheme for eigenvalue problems by nonconforming finite element methods , 2015 .

[20]  Yidu Yang,et al.  Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems , 2014 .

[21]  Hehu Xie,et al.  A multigrid method for the ground state solution of Bose–Einstein condensates based on Newton iteration , 2014, BIT Numerical Mathematics.

[22]  V. V. Shaidurov,et al.  Multigrid Methods for Finite Elements , 1995 .

[23]  Hehu Xie,et al.  A multi-level correction scheme for eigenvalue problems , 2011, Math. Comput..

[24]  Ping Wang,et al.  On the Monotonicity of (k;g,h)-graphs , 2002 .

[25]  Huajie Chen,et al.  Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model , 2010 .

[26]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[27]  Weizhu Bao,et al.  The Nonlinear Schrödinger Equation and Applications in Bose-Einstein Condensation and Plasma Physics , 2007 .

[28]  G. Burton Sobolev Spaces , 2013 .

[29]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[30]  Xiaoping Xie,et al.  Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations , 2013, 1312.6685.

[31]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[32]  Hehu Xie,et al.  A full multigrid method for eigenvalue problems , 2016, J. Comput. Phys..

[33]  J. Pasciak,et al.  New convergence estimates for multigrid algorithms , 1987 .

[34]  Hehu Xie,et al.  A posteriori error estimator for eigenvalue problems by mixed finite element method , 2013 .

[35]  Hehu Xie,et al.  Computable Error Estimates for Ground State Solution of Bose-Einstein Condensates , 2016 .

[36]  Yvon Maday,et al.  Numerical Analysis of Nonlinear Eigenvalue Problems , 2009, J. Sci. Comput..