Metagenomic Analysis of Hadopelagic Microbial Assemblages Thriving at the Deepest Part of Mediterranean Sea, Matapan-vavilov Deepe Mi_2827 1..16

The marine pelagic zone situated > 200 m below the sea level (bls) is the largest marine subsystem, comprising more than two-thirds of the oceanic volume. At the same time, it is one of the least explored ecosystems on Earth. Few large-scale environmental genomics studies have been undertaken to examine the phylogenetic diversity and functional gene repertoire of planktonic microbes present in mesopelagic and bathypelagic environments. Here, we present the description of the deep-sea microbial community thriving at > 4900 m depth in Matapan-Vavilov Deep (MVD). This canyon is the deepest site of Mediterranean Sea, with a deepest point located at approximately 5270 m, 56 km SW of city Pylos (Greece) in the Ionian Sea (36°34.00N, 21°07.44E). Comparative analysis of whole-metagenomic data revealed that unlike other deep-sea metagenomes, the prokaryotic diversity in MVD was extremely poor. The decline in the dark primary production rates, measured at 4908 m depth, was coincident with overwhelming dominance of copiotrophic Alteromonas macleodii'deep-ecotype' AltDE at the expense of other prokaryotes including those potentially involved in both autotrophic and anaplerotic CO(2) fixation. We also demonstrate the occurrence in deep-sea metagenomes of several clustered regularly interspaced short palindromic repeats systems.

[1]  E. Delong,et al.  Potential for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the Dark Ocean , 2011, Science.

[2]  A I Saeed,et al.  TM4: a free, open-source system for microarray data management and analysis. , 2003, BioTechniques.

[3]  E. Delong Archaea in coastal marine environments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[4]  V. Romanenko [HETEROTROPHIC CO-2 ASSIMILATION BY WATER BACTERIAL FLORA]. , 1964, Микробиология.

[5]  K. Horikoshi,et al.  Rapid Detection and Quantification of Members of the Archaeal Community by Quantitative PCR Using Fluorogenic Probes , 2000, Applied and Environmental Microbiology.

[6]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[7]  T. Reinthaler,et al.  Contribution of Archaea to Total Prokaryotic Production in the Deep Atlantic Ocean , 2005, Applied and Environmental Microbiology.

[8]  E. Boyle,et al.  Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future Directions , 2007, Science.

[9]  F. Rodríguez-Valera,et al.  Metagenome of the Mediterranean deep chlorophyll maximum studied by direct and fosmid library 454 pyrosequencing , 2010, The ISME Journal.

[10]  Naryttza N. Diaz,et al.  The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes , 2005, Nucleic acids research.

[11]  James R. Cole,et al.  rrndb: the Ribosomal RNA Operon Copy Number Database , 2001, Nucleic Acids Res..

[12]  W. Ludwig,et al.  SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB , 2007, Nucleic acids research.

[13]  Konstantinos T Konstantinidis,et al.  Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre. , 2008, Environmental microbiology.

[14]  G. Muyzer,et al.  Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors , 2008, Applied Microbiology and Biotechnology.

[15]  K. Porter,et al.  The use of DAPI for identifying and counting aquatic microflora1 , 1980 .

[16]  D. Lane 16S/23S rRNA sequencing , 1991 .

[17]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[18]  Matthew Z. DeMaere,et al.  The genomic basis of trophic strategy in marine bacteria , 2009, Proceedings of the National Academy of Sciences.

[19]  K. Timmis,et al.  Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L'Atalante, Eastern Mediterranean Sea , 2007, The ISME Journal.

[20]  M. Ferrer,et al.  Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea) , 2011, The ISME Journal.

[21]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[22]  E. Casamayor,et al.  Phylogenetic ecology of widespread uncultured clades of the Kingdom Euryarchaeota , 2011, Molecular ecology.

[23]  Robert J. Stern,et al.  SUBDUCTION ZONES , 2002 .

[24]  David C. Smith,et al.  A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine , 1992 .

[25]  C. Arnosti Microbial Extracellular Enzymes and their Role in Dissolved Organic Matter Cycling , 2003 .

[26]  George A. Jackson,et al.  Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria , 2001 .

[27]  Michael Shmoish,et al.  Microbial community genomics in eastern Mediterranean Sea surface waters , 2010, The ISME Journal.

[28]  P. Saager,et al.  Trace-metal distributions in seawater and anoxic brines in the eastern Mediterranean Sea , 1993 .

[29]  Dennis A. Hansell,et al.  Dissolved Organic Matter in the Ocean: A Controversy Stimulates New Insights , 2009 .

[30]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific , 2007, PLoS biology.

[31]  M. Ferrer,et al.  Genomic signatures of fifth autotrophic carbon assimilation pathway in bathypelagic Crenarchaeota , 2010, Microbial biotechnology.

[32]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[33]  F. Rodríguez-Valera,et al.  CO Dehydrogenase Genes Found in Metagenomic Fosmid Clones from the Deep Mediterranean Sea , 2009, Applied and Environmental Microbiology.

[34]  R. Hodson,et al.  Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems , 1985, Applied and environmental microbiology.

[35]  S. Yooseph,et al.  Going Deeper: Metagenome of a Hadopelagic Microbial Community , 2011, PloS one.

[36]  C. Santinelli,et al.  DOC dynamics in the meso and bathypelagic layers of the Mediterranean Sea , 2010 .

[37]  Purificación López-García,et al.  Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara , 2010, The ISME Journal.

[38]  Robert C. Edgar,et al.  PILER-CR: Fast and accurate identification of CRISPR repeats , 2007, BMC Bioinformatics.

[39]  J. Gasol,et al.  Microbial oceanography of the dark ocean's pelagic realm , 2009 .

[40]  E. Allen,et al.  Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. , 2011, Environmental microbiology reports.

[41]  Harald Meier,et al.  46. ARB: A Software Environment for Sequence Data , 2011 .

[42]  P. Bork,et al.  Prediction of effective genome size in metagenomic samples , 2007, Genome Biology.

[43]  R. Friedman,et al.  Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter , 2008, The ISME Journal.

[44]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[45]  Maureen L. Coleman,et al.  Microbial community gene expression in ocean surface waters , 2008, Proceedings of the National Academy of Sciences.

[46]  E. Delong,et al.  Community Genomics Among Stratified Microbial Assemblages in the Ocean's Interior , 2006, Science.

[47]  Dennis A. Hansell,et al.  Dissolved Organic Matter in the Ocean: New Insights Stimulated by a Controversy , 2009 .

[48]  M. Gonzalo Claros,et al.  SeqTrim: a high-throughput pipeline for pre-processing any type of sequence read , 2010, BMC Bioinformatics.

[49]  E. Casamayor,et al.  High bicarbonate assimilation in the dark by Arctic bacteria , 2010, The ISME Journal.

[50]  Jennifer S. Martinez,et al.  Marine amphiphilic siderophores: marinobactin structure, uptake, and microbial partitioning. , 2007, Journal of inorganic biochemistry.

[51]  Alexander F. Auch,et al.  MEGAN analysis of metagenomic data. , 2007, Genome research.

[52]  J. Bunge,et al.  Microbial community structure in the North Pacific ocean , 2009, The ISME Journal.

[53]  Bin-Guang Ma,et al.  Comparative analysis of predicted gene expression among deep-sea genomes. , 2007, Gene.

[54]  P. Pollard,et al.  Validity of the tritiated thymidine method for estimating bacterial growth rates: measurement of isotope dilution during DNA synthesis , 1984, Applied and environmental microbiology.

[55]  Susan M. Huse,et al.  24. Microbial Diversity in the Deep Sea and the Underexplored “Rare Biosphere” , 2011 .

[56]  E. Delong,et al.  Comparative Metagenomic Analysis of a Microbial Community Residing at a Depth of 4,000 Meters at Station ALOHA in the North Pacific Subtropical Gyre , 2009, Applied and Environmental Microbiology.

[57]  Andreas Wilke,et al.  phylogenetic and functional analysis of metagenomes , 2022 .

[58]  M. Henn,et al.  Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions , 2008, The ISME Journal.

[59]  H. Lester,et al.  Potential for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the Dark Ocean , 2011 .

[60]  F. Azam,et al.  Oceanography: Sea snow microcosms , 2001, Nature.

[61]  H. D. Baar,et al.  Distributions, sources and sinks of iron in seawater , 2001 .

[62]  Stan J. J. Brouns,et al.  Evolution and classification of the CRISPR–Cas systems , 2011, Nature Reviews Microbiology.

[63]  C. Santinelli,et al.  Relationships between dissolved organic carbon (DOC) and water mass structures in the Ionian Sea (winter 1999) , 2003 .

[64]  T. Reinthaler,et al.  Relationship between Bacterioplankton Richness, Respiration, and Production in the Southern North Sea , 2005, Applied and Environmental Microbiology.

[65]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[66]  James R. Cole,et al.  The Ribosomal Database Project: improved alignments and new tools for rRNA analysis , 2008, Nucleic Acids Res..

[67]  Thomas Huber,et al.  Bellerophon: a program to detect chimeric sequences in multiple sequence alignments , 2004, Bioinform..

[68]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[69]  P. Malanotte‐Rizzoli,et al.  A synthesis of the Ionian Sea hydrography, circulation and water mass pathways during POEM-Phase I , 1997 .

[70]  Purificación López-García,et al.  Metagenomics of the Deep Mediterranean, a Warm Bathypelagic Habitat , 2007, PloS one.

[71]  E. Delong,et al.  The Light-Driven Proton Pump Proteorhodopsin Enhances Bacterial Survival during Tough Times , 2010, PLoS biology.

[72]  Susan M. Huse,et al.  Microbial diversity in the deep sea and the underexplored “rare biosphere” , 2006, Proceedings of the National Academy of Sciences.

[73]  C. Tamburini,et al.  Cultivation-independent assessment of the bathypelagic archaeal diversity of Tyrrhenian Sea: Comparative study of rDNA and rRNA-derived libraries and influence of sample decompression , 2009 .

[74]  H. Deveau,et al.  CRISPR/Cas system and its role in phage-bacteria interactions. , 2010, Annual review of microbiology.

[75]  E. Stackebrandt,et al.  Nucleic acid techniques in bacterial systematics , 1991 .

[76]  Michael Y. Galperin,et al.  A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts , 2005, BMC Microbiology.

[77]  Romanenko Vi [HETEROTROPHIC CO-2 ASSIMILATION BY WATER BACTERIAL FLORA]. , 1964 .

[78]  Gene W. Tyson,et al.  Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column , 2009, Nature.

[79]  T. Reinthaler,et al.  Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic’s interior , 2010 .

[80]  Mary Ann Moran,et al.  Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. , 2009, Environmental microbiology.

[81]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[82]  F. Lauro,et al.  Prokaryotic lifestyles in deep sea habitats , 2007, Extremophiles.