Linearized min‐max robust model predictive control: Application to the control of a bioprocess

This work deals with the problem of trajectory tracking for a nonlinear system with unknown but bounded model parameter uncertainties. First, this work focuses on the design of a robust nonlinear model predictive control (RNMPC) law subject to model parameter uncertainties implying solving a min-max optimization problem. Secondly, a new approach is proposed, consisting in relating the min-max problem to a more tractable optimization problem based on the use of linearization techniques, to ensure a good trade-off between tracking accuracy and computation time. The developed strategy is applied in simulation to a simplified macroscopic continuous photobioreactor model and is compared to the RNMPC and nonlinear model predictive controllers. Its efficiency and its robustness against parameter uncertainties and/or perturbations are illustrated through numerical results.

[1]  B. Kouvaritakis,et al.  Successive linearization NMPC for a class of stochastic nonlinear systems , 2009 .

[2]  Ian R. Petersen,et al.  Nonlinear robust state feedback control system design for nonlinear uncertain systems , 2017 .

[3]  J. Peeters,et al.  The relationship between light intensity and photosynthesis—A simple mathematical model , 1978, Hydrobiological Bulletin.

[4]  O. Bernard Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production , 2011 .

[5]  Victor M. Zavala,et al.  Advanced step nonlinear model predictive control for air separation units , 2009 .

[6]  Pierdomenico Pepe,et al.  ISS feedback control redesign for continuous stirred tank reactors , 2011 .

[7]  Frank Allgöwer,et al.  Robust model predictive control for nonlinear discrete‐time systems , 2003 .

[8]  Riccardo Scattolini,et al.  Robustness and robust design of MPC for nonlinear discrete-time systems , 2007 .

[9]  D. Q. Mayne,et al.  Suboptimal model predictive control (feasibility implies stability) , 1999, IEEE Trans. Autom. Control..

[10]  Eduardo F. Camacho,et al.  Input to state stability of min-max MPC controllers for nonlinear systems with bounded uncertainties , 2006, Autom..

[11]  Didier Dumur,et al.  Nonlinear model predictive control of steel slab walking-beam reheating furnace based on a numerical model , 2014, 2014 IEEE Conference on Control Applications (CCA).

[12]  Didier Dumur,et al.  A linearized robust model predictive control applied to bioprocess , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[13]  Jan Van Impe,et al.  Parameter Identification of the Droop Model using Optimal Experiment Design , 2015 .

[14]  Xuejin Yang,et al.  Advances in sensitivity-based nonlinear model predictive control and dynamic real-time optimization , 2015 .

[15]  Didier Dumur,et al.  Nonlinear Predictive Control of Fed‐Batch Cultures of Escherichia coli , 2010 .

[16]  Francis Mairet,et al.  Getting the most out of it: Optimal experiments for parameter estimation of microalgae growth models , 2014 .

[17]  Shashi Kant Mishra Topics in Nonconvex Optimization , 2011 .

[18]  Z. Nagy,et al.  Robust nonlinear model predictive control of batch processes , 2003 .

[19]  Didier Dumur,et al.  Model-based versus model-free control designs for improving microalgae growth in a closed photobioreactor: Some preliminary comparisons , 2016, 2016 24th Mediterranean Conference on Control and Automation (MED).

[20]  Eric C. Kerrigan,et al.  Predictive Control Using an FPGA With Application to Aircraft Control , 2014, IEEE Transactions on Control Systems Technology.

[21]  Didier Dumur,et al.  Nonlinear predictive control for maximization of CO2 bio-fixation by microalgae in a photobioreactor , 2013, Bioprocess and Biosystems Engineering.

[22]  Behzad Moshiri,et al.  Optimal control of a nonlinear fed-batch fermentation process using model predictive approach , 2009 .

[23]  Ali H. Sayed,et al.  A Regularized Robust Design Criterion for Uncertain Data , 2001, SIAM J. Matrix Anal. Appl..

[24]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[25]  A. Vande Wouwer,et al.  Design of a Robust Nonlinear Receding-Horizon Observer - Application to a biological system , 2008 .

[26]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[27]  John L. Crassidis,et al.  NONLINEAR PREDICTIVE CONTROL OF SPACECRAFT , 1997 .

[28]  Marko Bacic,et al.  Model predictive control , 2003 .

[29]  David Q. Mayne,et al.  Control of Constrained Dynamic Systems , 2001, Eur. J. Control.

[30]  D. Mayne,et al.  Robust receding horizon control of constrained nonlinear systems , 1993, IEEE Trans. Autom. Control..

[31]  Lorenz T. Biegler,et al.  Control and optimization strategies for thermo-mechanical pulping processes: Nonlinear model predictive control , 2011 .

[32]  O Bernard,et al.  Transient behavior of biological loop models with application to the Droop model. , 1995, Mathematical biosciences.

[33]  D. Mayne,et al.  Model predictive control of constrained piecewise affine discrete‐time systems , 2003 .

[34]  J. Richalet,et al.  Industrial applications of model based predictive control , 1993, Autom..

[35]  Jens G. Balchen,et al.  State Space Model Predictive Control of a Multi Stage Electro-metallurgical Process , 1989 .

[36]  M. B. Zarrop,et al.  Generalized pole-placement self-tuning controller Part 1, Basic algorithm , 1987 .

[37]  D.W. Clarke,et al.  Application of generalized predictive control to industrial processes , 1988, IEEE Control Systems Magazine.

[38]  J. Maciejowski,et al.  Feedback min‐max model predictive control using a single linear program: robust stability and the explicit solution , 2004 .

[39]  S. Dubljevic,et al.  Predictive control of parabolic PDEs with state and control constraints , 2006, Proceedings of the 2004 American Control Conference.

[40]  Eduardo F. Camacho,et al.  Min-max Model Predictive Control of Nonlinear Systems: A Unifying Overview on Stability , 2009, Eur. J. Control.