IGT: inverse geometric textures

Preserving details from a high resolution reference model onto lower resolution models is a complex, and sometimes daunting, task as manual intervention is required to correct texture misplacements. Inverse Geometric Textures (IGT) is a parameterization-independent texturing technique that allows preservation of texture details from a high resolution reference model onto lower resolutions, generated with any given simplification method. IGT uses a parameterization defined on the reference model to generate an inversely parameterized texture that stores, for each texel, a list with information about all the triangles mapped onto it. In this way, for any valid texture coordinate, IGT can identify the point and the triangle of the detailed model that was projected, allowing details from the reference model to be applied onto the fragment from the low-resolution model. IGT is encoded in compact data structures and can be evaluated quickly. Furthermore, the high resolution model can have its own independent artist-provided, unmodified parameterization, so that no additional effort is required to directly use artist-designed content.

[1]  Michael Garland,et al.  Simplifying surfaces with color and texture using quadric error metrics , 1998, IEEE Visualization.

[2]  Pedro V. Sander,et al.  Multi-Chart Geometry Images , 2003, Symposium on Geometry Processing.

[3]  David W. Jacobs,et al.  Mesh saliency , 2005, ACM Trans. Graph..

[4]  Tomas Akenine-Möller,et al.  An Evaluation Framework for Ray-Triangle Intersection Algorithms , 2005, J. Graph. Tools.

[5]  Paolo Cignoni,et al.  Visibility based methods and assessment for detail-recovery , 2003, IEEE Visualization, 2003. VIS 2003..

[6]  Dani Lischinski,et al.  Bounded-distortion piecewise mesh parameterization , 2002, IEEE Visualization, 2002. VIS 2002..

[7]  Paolo Cignoni,et al.  Preserving attribute values on simplified meshes by resampling detail textures , 1998, The Visual Computer.

[8]  Bruno Lévy,et al.  ABF++: fast and robust angle based flattening , 2005, TOGS.

[9]  Kenneth I. Joy,et al.  Shell maps , 2005, ACM Trans. Graph..

[10]  Bruno Lévy,et al.  Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.

[11]  James T. Kajiya,et al.  Rendering fur with three dimensional textures , 1989, SIGGRAPH.

[12]  Paolo Cignoni,et al.  PolyCube-Maps , 2004, SIGGRAPH 2004.

[13]  Michael Wimmer,et al.  Unpopping: Solving the Image‐Space Blend Problem for Smooth Discrete LOD Transitions , 2007, Comput. Graph. Forum.

[14]  Hugues Hoppe,et al.  New quadric metric for simplifying meshes with appearance attributes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[15]  Manuel Menezes de Oliveira Neto,et al.  Real-time relief mapping on arbitrary polygonal surfaces , 2005, I3D '05.

[16]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[17]  John C. Hart,et al.  Meshed atlases for real-time procedural solid texturing , 2002, TOGS.

[18]  Paolo Cignoni,et al.  A general method for preserving attribute values on simplified meshes , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[19]  Sylvain Lefebvre,et al.  Perfect spatial hashing , 2006, ACM Trans. Graph..

[20]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[21]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[22]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[23]  Tamy Boubekeur,et al.  Appearance preserving octree-textures , 2007, GRAPHITE '07.

[24]  Jung-Hong Chuang,et al.  Texture Adaptation for Progressive Meshes , 2006, Comput. Graph. Forum.

[25]  Diego Nehab,et al.  Texel programs for random-access antialiased vector graphics , 2007 .

[26]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[27]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.