Phase-field modeling of microstructure evolutions in magnetic materials

Abstract Recently, the phase-field method has been extended and utilized across many fields of materials science. Since this method can incorporate, systematically, the effect of the coherency induced by lattice mismatch and the applied stress as well as the external electrical and magnetic fields, it has been applied to many material processes including solidification, solid-state phase transformations and various types of complex microstructure changes. In this paper, we focus on the recent phase-field simulations of real magnetic materials, and the simulation method for magnetic materials is explained comprehensively. Several applications of the phase-field method to clarifying the microstructure changes in magnetic materials, such as Ni2MnGa ferromagnetic shape memory alloy, FePt nanogranular thin film, Co–Sm–Cu rare-earth magnet, Fe–Cr–Co spinodal magnet, and Fe–C steel with external magnetic field, are demonstrated. Furthermore, the general concept of the effective strategy for controlling microstructure in magnetic materials is proposed.

[1]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[2]  Zi-kui Liu,et al.  Modeling Solid-State Phase Transformations and Microstructure Evolution , 2001 .

[3]  Long-Qing Chen,et al.  Computer simulation of stress-oriented nucleation and growth of θ′ precipitates inAl–Cu alloys , 1998 .

[4]  T. Koyama,et al.  Phase-Field simulation of phase decomposition in Fe−Cr−Co alloy under an external magnetic field , 2004 .

[5]  A. Karma,et al.  New insights into the morphological stability of eutectic and peritectic coupled growth , 2004 .

[6]  Long-Qing Chen,et al.  Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials , 2005 .

[7]  Jie Shen,et al.  Computer simulation of spinodal decomposition in constrained films , 2003 .

[8]  T. Koyama,et al.  Simulation of hexagonal–orthorhombic phase transformation in polycrystals , 2007 .

[9]  M. Okada,et al.  Further studies of the miscibility gap in an Fe-Cr-Co permanent magnet system , 1980 .

[10]  Long-Qing Chen,et al.  Phase-field simulation of polarization switching and domain evolution in ferroelectric polycrystals , 2005 .

[11]  T. Koyama,et al.  Phase-field Modeling of Structural Elongation and Alignment of (α+γ) Microstructure in Fe–0.4C Alloy during Thermomagnetic Treatment , 2006 .

[12]  Kazuhiro Hono,et al.  Microstructures of FePt–Al–O and FePt–Ag nanogranular thin films and their magnetic properties , 2001 .

[13]  M. Enomoto,et al.  Modeling the microstructural evolution of Ni-base superalloys by phase field method combined with CALPHAD and CVM , 2007 .

[14]  Phil Won Yu,et al.  Optical characteristics of self-assembled InAs quantum dots with InGaAs grown by a molecular beam epitaxy , 2004 .

[15]  Horst Czichos,et al.  Springer Handbook of Materials Measurement Methods , 2006 .

[16]  Frédéric Barlat,et al.  Continuum Scale Simulation of Engineering Materials Fundamentals - Microstructures - Process Applications , 2004 .

[17]  Toshio Suzuki,et al.  Phase-field model for binary alloys. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  M. Hillert,et al.  A model for alloying in ferromagnetic metals , 1978 .

[19]  Heike Emmerich,et al.  The Diffuse Interface Approach in Materials Science: Thermodynamic Concepts and Applications of Phase-Field Models , 2003 .

[20]  A. Karma,et al.  Quantitative phase-field modeling of dendritic growth in two and three dimensions , 1996 .

[21]  M. Takeuchi,et al.  Spinodal Decomposition in Alnico 8 Magnet Alloy , 1974 .

[22]  R. Kobayashi Modeling and numerical simulations of dendritic crystal growth , 1993 .

[23]  Yoshihiro Yamazaki,et al.  Kinetics of cubic to tetragonal transformation under external field by the time-dependent Ginzburg-Landau approach , 2000 .

[24]  W. Carter,et al.  Extending Phase Field Models of Solidification to Polycrystalline Materials , 2003 .

[25]  T. Koyama,et al.  Modeling of Microstructure Changes in FePt Nano-Granular Thin Films Using the Phase-Field Method , 2003 .

[26]  Badrinarayan P. Athreya,et al.  Using the phase-field crystal method in the multi-scale modeling of microstructure evolution , 2007 .

[27]  Toshio Suzuki,et al.  Phase-field model of dendritic growth , 2002 .

[28]  Peter W Voorhees,et al.  Phase-field simulation of 2-D Ostwald ripening in the high volume fraction regime , 2002 .

[29]  A. Karma Phase-field formulation for quantitative modeling of alloy solidification. , 2001, Physical review letters.

[30]  H. Wada,et al.  Alignment of Ferrite Grains during Austenite to Ferrite Transformation in a High Magnetic Field , 2000 .

[31]  N. Saunders,et al.  CALPHAD : calculation of phase diagrams : a comprehensive guide , 1998 .

[32]  Hidehiro Onodera,et al.  Three-dimensional phase field simulation of the effect of anisotropy in grain-boundary mobility on growth kinetics and morphology of grain structure , 2007 .

[33]  I. Steinbach,et al.  A phase field concept for multiphase systems , 1996 .

[34]  Yu U. Wang,et al.  Phase field microelasticity theory and simulation of multiple voids and cracks in single crystals and polycrystals under applied stress , 2002 .

[35]  T. Koyama,et al.  Size dependence of ordering in FePt nanoparticles , 2004 .

[36]  Krishna Rajan,et al.  Linking length scales via materials informatics , 2006 .

[37]  A. Khachaturyan,et al.  Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of ζ′2 martensite in AuCd alloys , 2001 .

[38]  J. Warren,et al.  Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method , 1995 .

[39]  Toshio Suzuki,et al.  Recent advances in the phase-field model for solidification , 2001 .

[40]  T. Koyama,et al.  Computer simulation of phase decomposition in two dimensions based on a discrete type non-linear diffusion equation , 1998 .

[41]  D. Rodney,et al.  Phase eld methods and dislocations , 2001 .

[42]  S. Shi,et al.  Simulation of γ-hydride precipitation in bi-crystalline zirconium under uniformly applied load , 2002 .

[43]  Hidehiro Onodera,et al.  Modeling of microstructure changes in Fe−Cr−Co magnetic alloy using the phase-field method , 2006 .

[44]  Toshiyuki Koyama,et al.  The microstructure of sintered Sm (Co0.72Fe0.20Cu0.055Zr0.025) (7.5) permanent magnet studied by atom probe , 2004 .

[45]  Tao Wang,et al.  Three-dimensional phase-field simulations of coarsening kinetics of γ' particles in binary Ni-Al alloys , 2004 .

[46]  K. Ullakko,et al.  Giant Magnetostriction in Ferromagnetic Shape-Memory Alloys , 2002 .

[47]  H. Kronmüller,et al.  Micromagnetism and the Microstructure of Ferromagnetic Solids , 2003 .

[48]  Long-Qing Chen,et al.  Computer simulation of 3-D grain growth using a phase-field model , 2002 .

[49]  Alberto M. Cuitiño,et al.  Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations , 2001 .

[50]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[51]  Wheeler,et al.  Phase-field model for isothermal phase transitions in binary alloys. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[52]  Nishimori,et al.  Pattern formation in phase-separating alloys with cubic symmetry. , 1990, Physical review. B, Condensed matter.

[53]  T. Koyama,et al.  Phase-Field Simulation of Microstructure Changes in Ni2MnGa Ferromagnetic Alloy Under External Stress and Magnetic Fields , 2003 .

[54]  D. Goll,et al.  Micromagnetic analysis of pinning-hardened nanostructured, nanocrystalline Sm2Co17 based alloys , 2002 .

[55]  S. Nambu,et al.  Computer Simulation of Kinetics of Spinodal Decomposition in the Tetragonal TiO2–SnO2 System , 1992 .

[56]  A. Karma,et al.  Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[57]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[58]  J. Warren,et al.  Phase-field models for eutectic solidification , 2004 .

[59]  J. Cahn Magnetic Aging of Spinodal Alloys , 1963 .

[60]  V. V. Kokorin,et al.  Magnetically controlled shape memory effect in Ni2MnGa intermetallics , 1997 .

[61]  Tong-Yi Zhang,et al.  Phase-field simulations of ferroelectric/ferroelastic polarization switching , 2004 .

[62]  G. Thomas,et al.  Microstructure and magnetic properties of Fe-Cr-Co alloys , 1978 .