Antifouling coatings for optoelectronic tweezers.

Optoelectronic tweezers enables parallel manipulation of individual single cells using optical addressing and optically induced dielectrophoretic force. This provides a useful platform for performing a variety of biological functions, such as cell manipulation, cell sorting, and cell electroporation. However, in order to obtain more reliable cellular manipulation, especially of adherent mammalian cells, antifouling coatings need to be used to avoid non-specific cell adherence. Two antifouling coatings are discussed here, which can reduce the amount of non-specific adherence by as much as a factor of 30.

[1]  Chengkuo Lee,et al.  Controllability of Non-Contact Cell Manipulation by Image Dielectrophoresis (iDEP) , 2005 .

[2]  T Kaneta,et al.  Determination of motility forces of bovine sperm cells using an "optical funnel". , 2000, Analytical chemistry.

[3]  T. Imasaka,et al.  The “Optical Funnel”. A Technique for Measuring a Microorganism's Power , 1998 .

[4]  J. Voldman Electrical forces for microscale cell manipulation. , 2006, Annual review of biomedical engineering.

[5]  P. Kingshott,et al.  Surfaces that resist bioadhesion , 1999 .

[6]  Luke P. Lee,et al.  Dynamic single cell culture array. , 2006, Lab on a chip.

[7]  Michael A. Teitell,et al.  Floating electrode optoelectronic tweezers: Light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium. , 2008, Applied physics letters.

[8]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[9]  E. Kandel,et al.  Proceedings of the National Academy of Sciences of the United States of America. Annual subject and author indexes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Peter R C Gascoyne,et al.  Dielectrophoretic Separation of Cancer Cells from Blood. , 1997, IEEE transactions on industry applications.

[11]  Roberto Guerrieri,et al.  A lab-on-a-chip for cell detection and manipulation , 2003 .

[12]  Ronald Pethig,et al.  Enhancing traveling-wave dielectrophoresis with signal superposition. , 2003, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[13]  F F Becker,et al.  The removal of human breast cancer cells from hematopoietic CD34+ stem cells by dielectrophoretic field-flow-fractionation. , 1999, Journal of Hematotherapy & Stem Cell Research.

[14]  Robert H. Austin,et al.  Continuous microfluidic immunomagnetic cell separation , 2004 .

[15]  K. O. Greulich,et al.  Comet Assay Measurements of DNA Damage in Cells by Laser Microbeams and Trapping Beams with Wavelengths Spanning a Range of 308 nm to 1064 nm , 2002, Radiation research.

[16]  Peter R. C. Gascoyne,et al.  Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments , 2004, Proceedings of the IEEE.

[17]  H. A. Pohl,et al.  Some Effects of Nonuniform Fields on Dielectrics , 1958 .

[18]  Proceedings of the IEEE , 2018, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[19]  ScienceDirect Current opinion in solid state & materials science , 1996 .

[20]  N. Chronis,et al.  Electrothermally activated SU-8 microgripper for single cell manipulation in solution , 2005, Journal of Microelectromechanical Systems.

[21]  M. Sheetz,et al.  A force-dependent switch reverses type IV pilus retraction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[23]  M Mazilu,et al.  The resolution of optical traps created by Light Induced Dielectrophoresis (LIDEP). , 2007, Optics express.

[24]  M. Grunze,et al.  MOLECULAR CONFORMATION AND SOLVATION OF OLIGO(ETHYLENE GLYCOL)-TERMINATED SELF-ASSEMBLED MONOLAYERS AND THEIR RESISTANCE TO PROTEIN ADSORPTION , 1997 .

[25]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[26]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[27]  C. Tanford Macromolecules , 1994, Nature.

[28]  Hakho Lee,et al.  Manipulation of biological cells using a microelectromagnet matrix , 2004 .

[29]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[30]  W. Z Witteman Optical and Quantum Electronics 12 ( 1980 ) 259-268 Detuning effects of FM mode-locking in atmospheric CO 2 lasers , 2004 .

[31]  Roberto Guerrieri,et al.  Electronic sorting and recovery of single live cells from microlitre sized samples. , 2006, Lab on a chip.

[32]  B. Tromberg,et al.  Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption. , 1996, Optics letters.

[33]  J. Kutter,et al.  Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. , 2003, Lab on a chip.

[34]  M.C. Wu,et al.  Operational Regimes and Physics Present in Optoelectronic Tweezers , 2008, Journal of Microelectromechanical Systems.

[35]  L. Cser,et al.  Applied Physics A Materials Science & Processing Holography using thermal neutrons , 2002 .

[36]  R. Muller,et al.  Silicon-processed overhanging microgripper , 1992 .

[37]  M.C. Wu,et al.  Dynamic Cell and Microparticle Control via Optoelectronic Tweezers , 2007, Journal of Microelectromechanical Systems.

[38]  A. Mehta,et al.  Single-molecule biomechanics with optical methods. , 1999, Science.

[39]  実 佐々木,et al.  IEEE/LEOS International Conference on Optical MEMS and Nanophotonics 2007 , 2008 .

[40]  D. Grier A revolution in optical manipulation , 2003, Nature.

[41]  Sang Kug Chung,et al.  3-D manipulation of millimeter- and micro-sized objects using an acoustically excited oscillating bubble , 2009 .

[42]  Sam Kassegne,et al.  Separation of Simulants of Biological Warfare Agents from Blood by a Miniaturized Dielectrophoresis Device , 2003 .

[43]  Kenneth R. Diller,et al.  Annual review of biomedical engineering , 1999 .

[44]  Peidong Yang,et al.  Dynamic manipulation and separation of individual semiconducting and metallic nanowires. , 2008, Nature photonics.

[45]  M.C. Wu,et al.  Optically Controlled Cell Discrimination and Trapping Using Optoelectronic Tweezers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[46]  I. Szleifer,et al.  Protein adsorption on surfaces with grafted polymers: a theoretical approach. , 1997, Biophysical journal.

[47]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[48]  Aaron R Wheeler,et al.  Microfluidic device for single-cell analysis. , 2003, Analytical chemistry.

[49]  Ieee Xplore,et al.  IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society. , 2010 .

[50]  K Bergman,et al.  Characterization of photodamage to Escherichia coli in optical traps. , 1999, Biophysical journal.

[51]  Robert Puers,et al.  Journal of Micromechanics and Microengineering: Editorial , 2007 .

[52]  Premnath,et al.  Poly(ethylene oxide) Grafted to Silicon Surfaces: Grafting Density and Protein Adsorption. , 1998, Macromolecules.

[53]  L.Y. Lin,et al.  Trapping and Manipulation of Biological Particles Through a Plasmonic Platform , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[54]  J. Squier,et al.  Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[55]  S. Quake,et al.  An Integrated Microfabricated Cell Sorter , 2022 .

[56]  N. Manaresi,et al.  A CMOS chip for individual cell manipulation and detection , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[57]  M. Heller,et al.  Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip. , 1998, Analytical chemistry.

[58]  Do-Hyun Lee,et al.  Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force. , 2009, Biomicrofluidics.