Almost quantum correlations

Quantum theory is not only successfully tested in laboratories every day but also constitutes a robust theoretical framework: small variations usually lead to implausible consequences, such as faster-than-light communication. It has even been argued that quantum theory may be special among possible theories. Here we report that, at the level of correlations among different systems, quantum theory is not so special. We define a set of correlations, dubbed 'almost quantum', and prove that it strictly contains the set of quantum correlations but satisfies all-but-one of the proposed principles to capture quantum correlations. We present numerical evidence that the remaining principle is satisfied too.

[1]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  N. Gisin Stochastic quantum dynamics and relativity , 1989 .

[4]  Halliwell,et al.  Quantum mechanics of history: The decoherence functional in quantum mechanics. , 1992, Physical review. D, Particles and fields.

[5]  Gell-Mann,et al.  Classical equations for quantum systems. , 1992, Physical review. D, Particles and fields.

[6]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[7]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[8]  Griffiths Consistent histories and quantum reasoning. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[9]  D. Abrams,et al.  NONLINEAR QUANTUM MECHANICS IMPLIES POLYNOMIAL-TIME SOLUTION FOR NP-COMPLETE AND P PROBLEMS , 1998, quant-ph/9801041.

[10]  Alain Tapp,et al.  Quantum Entanglement and the Communication Complexity of the Inner Product Function , 1998, QCQC.

[11]  Jorge J. Moré,et al.  The NEOS Server , 1998 .

[12]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[13]  L. Hardy Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.

[14]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[15]  Scott Aaronson,et al.  Quantum computing, postselection, and probabilistic polynomial-time , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Generalizing Quantum Mechanics for Quantum Spacetime , 2006, gr-qc/0602013.

[17]  H. Buhrman,et al.  Limit on nonlocality in any world in which communication complexity is not trivial. , 2005, Physical review letters.

[19]  A. J. Short,et al.  Quantum nonlocality and beyond: limits from nonlocal computation. , 2007, Physical review letters.

[20]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[21]  N. Brunner,et al.  Closed sets of nonlocal correlations , 2009, 0908.1496.

[22]  Tsuyoshi Ito,et al.  Oracularization and Two-Prover One-Round Interactive Proofs against Nonlocal Strategies , 2008, 2009 24th Annual IEEE Conference on Computational Complexity.

[23]  A. Winter,et al.  Information causality as a physical principle , 2009, Nature.

[24]  M. Pawłowski,et al.  Recovering part of the boundary between quantum and nonquantum correlations from information causality , 2009 .

[25]  T. V'ertesi,et al.  Quantum bounds on Bell inequalities , 2008, 0810.1615.

[26]  M. Navascués,et al.  A glance beyond the quantum model , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Č. Brukner,et al.  Quantum Theory and Beyond: Is Entanglement Special? , 2009, 0911.0695.

[28]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[29]  M. Pawłowski,et al.  Entanglement-assisted random access codes , 2009, 0906.0524.

[30]  A. Winter,et al.  (Non-)Contextuality of Physical Theories as an Axiom , 2010, 1010.2163.

[31]  Alejo Salles,et al.  Macroscopically local correlations can violate information causality. , 2010, Nature communications.

[32]  Samson Abramsky,et al.  The sheaf-theoretic structure of non-locality and contextuality , 2011, 1102.0264.

[33]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[34]  Markus P. Mueller,et al.  A derivation of quantum theory from physical requirements , 2010, 1004.1483.

[35]  L. Hardy Reformulating and Reconstructing Quantum Theory , 2011, 1104.2066.

[36]  Lars Erik Würflinger,et al.  Quantum correlations require multipartite information principles. , 2011, Physical review letters.

[37]  Stefano Pironio,et al.  Quantum non-locality based on finite-speed causal influences leads to superluminal signalling , 2011, Nature Physics.

[38]  Wim van Dam Implausible consequences of superstrong nonlocality , 2012, Natural Computing.

[39]  Alain Tapp,et al.  Quantum Entanglement and the Communication Complexity of the Inner Product Function , 1997, QCQC.

[40]  T. Fritz,et al.  A Combinatorial Approach to Nonlocality and Contextuality , 2012, Communications in Mathematical Physics.

[41]  T. Fritz,et al.  Local orthogonality as a multipartite principle for quantum correlations , 2012, Nature Communications.

[42]  S. Popescu Nonlocality beyond quantum mechanics , 2014, Nature Physics.

[43]  A. Winter,et al.  Graph-theoretic approach to quantum correlations. , 2014, Physical review letters.

[44]  J. Henson,et al.  A histories perspective on characterizing quantum non-locality , 2013, 1311.6287.

[45]  Matty J Hoban,et al.  Maximally nonlocal theories cannot be maximally random. , 2014, Physical review letters.

[46]  Joe Henson,et al.  Bounding Quantum Contextuality with Lack of Third-Order Interference. , 2014, Physical review letters.