Quantitative characterization of the X-ray beam at the Australian Synchrotron Imaging and Medical Beamline (IMBL).

A critical early phase for any synchrotron beamline involves detailed testing, characterization and commissioning; this is especially true of a beamline as ambitious and complex as the Imaging & Medical Beamline (IMBL) at the Australian Synchrotron. IMBL staff and expert users have been performing precise experiments aimed at quantitative characterization of the primary polychromatic and monochromatic X-ray beams, with particular emphasis placed on the wiggler insertion devices (IDs), the primary-slit system and any in vacuo and ex vacuo filters. The findings from these studies will be described herein. These results will benefit IMBL and other users in the future, especially those for whom detailed knowledge of the X-ray beam spectrum (or `quality') and flux density is important. This information is critical for radiotherapy and radiobiology users, who ultimately need to know (to better than 5%) what X-ray dose or dose rate is being delivered to their samples. Various correction factors associated with ionization-chamber (IC) dosimetry have been accounted for, e.g. ion recombination, electron-loss effects. A new and innovative approach has been developed in this regard, which can provide confirmation of key parameter values such as the magnetic field in the wiggler and the effective thickness of key filters. IMBL commenced operation in December 2008 with an Advanced Photon Source (APS) wiggler as the (interim) ID. A superconducting multi-pole wiggler was installed and operational in January 2013. Results are obtained for both of these IDs and useful comparisons are made. A comprehensive model of the IMBL has been developed, embodied in a new computer program named spec.exe, which has been validated against a variety of experimental measurements. Having demonstrated the reliability and robustness of the model, it is then possible to use it in a practical and predictive manner. It is hoped that spec.exe will prove to be a useful resource for synchrotron science in general, and for hard X-ray beamlines, whether they are based on bending magnets or insertion devices, in particular. In due course, it is planned to make spec.exe freely available to other synchrotron scientists.

[1]  J. Wortman,et al.  Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium , 1965 .

[2]  N. Bradbury The Absolute Values of the Mobility of Gaseous Ions in Pure Gases , 1932 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  P. Spanne,et al.  Microbeam radiation therapy. , 1992 .

[5]  A. Bravin,et al.  Determination of dosimetrical quantities used in microbeam radiation therapy (MRT) with Monte Carlo simulations. , 2006, Medical physics.

[6]  L. Onsager Initial Recombination of Ions , 1938 .

[7]  B. Warren A Method for Measuring the Total Power of Small‐Angle X‐Ray Scattering , 1949 .

[8]  P. Cloetens,et al.  Anisotropic elasticity of silicon and its application to the modelling of X-ray optics , 2014, Journal of synchrotron radiation.

[9]  D. Butler,et al.  Monte Carlo correction factors for the ARPANSA kilovoltage free-air chambers and the effect of moving the limiting aperture , 2010 .

[10]  I. Rosenberg,et al.  Radiation Oncology Physics: A Handbook for Teachers and Students , 2008, British Journal of Cancer.

[11]  W. Roesch Dose for Nonelectronic Equilibrium Conditions , 1958 .

[12]  T. Kurosawa,et al.  Estimation of Electron-loss and Photon-scattering Corrections for Parallel-plate Free-air Chambers , 2005 .

[13]  A. Stevenson,et al.  Assessment and Implications of Scattered Microbeam and Broadbeam Synchrotron Radiation for Bystander Effect Studies , 2015, Radiation research.

[14]  D. Einfeld,et al.  The physics design of the Australian synchrotron storage ring , 2004 .

[15]  K. Subotić,et al.  Numerical solutions of differential equations of an ionization chamber: plane-parallel and spherical geometry , 1998, Physics in medicine and biology.

[16]  N. Nariyama,et al.  Development of a portable free-air ionization chamber as an absolute intensity monitor for high-energy synchrotron radiation up to 150 keV , 2004 .

[17]  H. Kitamura,et al.  SPECTRA: a synchrotron radiation calculation code. , 2001, Journal of synchrotron radiation.

[18]  M. Petasecca,et al.  Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates , 2016, Physics in medicine and biology.

[19]  W. Voigt Lehrbuch der kristallphysik : (mit Ausschluss der Kristalloptik) , 1910 .

[20]  Mark J. Tobin,et al.  Instrumentation upgrade for Top-Up operations at the Australian Synchrotron , 2013 .

[21]  A. Bravin,et al.  MOSFET dosimetry with high spatial resolution in intense synchrotron-generated x-ray microbeams. , 2009, Medical physics.

[22]  L J Schreiner,et al.  Review of Fricke gel dosimeters , 2004 .

[23]  C. Schulze-Briese,et al.  Fixed-exit monochromator for computed tomography with synchrotron radiation at energies 18-90 keV. , 2000, Journal of synchrotron radiation.

[24]  George Jaffé,et al.  Zur Theorie der Ionisation in Kolonnen , 1913 .

[25]  Jacques Balosso,et al.  Radiobiological features of the anti-cancer strategies involving synchrotron X-rays. , 2008, Journal of synchrotron radiation.

[26]  M.M.R. Williams Introduction to health physics (2nd edn): Herman Cember. Northwestern University, U.S.A. (1985) £28.00 (softcover—revised and enlarged). 516 pp , 1989 .

[27]  Yukihide Kamiya,et al.  Beryllium window and graphite filter assemblies for high heat flux synchrotron radiation beamlines at the Photon Factory , 1993, Optics & Photonics.

[28]  F. H. Attix,et al.  An ionization chamber for kilocurie source calibrations. , 1962, Radiation research.

[29]  E. A. Mason,et al.  Mobility of Hydrogen Ions (H + , H + 2 , H + 3 ) in Hydrogen , 1959 .

[30]  D. Chapman,et al.  PEPO : A PROGRAM FOR THE CALCULATION OF THE REFLECTIVITY OF CYLINDRICALLY BENT LAUE CRYSTAL MONOCHROMATORS , 1995 .

[31]  Shunji Goto,et al.  Characterization of radiation from a figure-8 undulator by a gas-scattering method , 2000 .

[32]  D. Bradley,et al.  X-ray microbeam radiation therapy calculations, including polarisation effects, with the Monte Carlo code EGS5 , 2010 .

[33]  A. Stevenson,et al.  Reference dosimetry at the Australian Synchrotron's imaging and medical beamline using free-air ionization chamber measurements and theoretical predictions of air kerma rate and half value layer. , 2013, Medical physics.

[34]  M. Petasecca,et al.  Medical physics aspects of the synchrotron radiation therapies: Microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT). , 2015, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics.

[35]  J. Greening,et al.  CORRESPONDENCE: On Greening's Treatment of Saturation Characteristics of Parallel-Plate Ionization Chambers , 1965 .

[36]  W. Thomlinson,et al.  A white-beam fast-shutter for microbeam radiation therapy at the ESRF , 2002 .

[37]  T. Grimbergen,et al.  Correction factors for the NMi free-air ionization chamber for medium-energy x-rays calculated with the Monte Carlo method. , 1998, Physics in medicine and biology.

[38]  H. Selbach,et al.  Calorimetric determination of the absorbed dose to water for medium-energy x-rays with generating voltages from 70 to 280 kV , 2012, Physics in medicine and biology.

[39]  R. Rassool,et al.  Storage ring lattice calibration using resonant spin depolarization , 2013 .

[40]  D. R. Chipman Mass Absorption Coefficient of Carbon for CuKα Radiation , 1955 .

[41]  Ian A. Cunningham Linear-systems modeling of parallel cascaded stochastic processes: the NPS of radiographic screens with reabsorption of characteristic x-radiation , 1998, Medical Imaging.

[42]  J. Greening Saturation Characteristics of Parallel-Plate Ionization Chambers , 1964 .

[43]  L. Kemp,et al.  A precision investigation of some aspects of parallel-plate free-air chamber geometry. , 1954, The British journal of radiology.

[44]  Alberto Astolfo,et al.  Detectors for the Imaging and Medical Beam Line at the Australian Synchrotron , 2013 .

[45]  P. Johnston,et al.  Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter. , 2014, Medical physics.

[46]  C. Ma,et al.  BEAM: a Monte Carlo code to simulate radiotherapy treatment units. , 1995, Medical physics.

[47]  A. H. Compton,et al.  X-rays in Theory and Experiment , 1935 .

[48]  A. Stevenson,et al.  Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers , 2016, Physics in medicine and biology.

[49]  M. Petasecca,et al.  Influence of polarization and a source model for dose calculation in MRT. , 2014, Medical physics.

[50]  A. Maradudin,et al.  An Introduction To Applied Anisotropic Elasticity , 1961 .

[51]  M. Mcewen,et al.  An experimental and computational investigation of the standard temperature-pressure correction factor for ion chambers in kilovoltage x rays. , 2007, Medical physics.

[52]  W. Armstrong,et al.  ACCURACY OF APPROXIMATE SOLUTIONS FOR CURRENTS IN A PLANE PARALLEL ION CHAMBER , 1965 .

[53]  C. Chu,et al.  Correction factors for the INER-improved free-air ionization chambers calculated with the Monte Carlo method. , 2006, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[54]  J. M. Robertson Internationale Tabellen zur Bestimmung von Kristallstrukturen: , 1936, Nature.

[55]  A. Stevenson,et al.  High spatial resolution dosimetric response maps for radiotherapy ionization chambers measured using kilovoltage synchrotron radiation , 2015, Physics in medicine and biology.

[56]  J. D. Bernal,et al.  X-Rays in Theory and Experiment , 1935, Nature.

[57]  C. Baldock,et al.  Radiological characterization and water equivalency of genipin gel for x-ray and electron beam dosimetry , 2011, Physics in medicine and biology.

[58]  Alberto Bravin,et al.  X-Tream: a novel dosimetry system for Synchrotron Microbeam Radiation Therapy , 2012 .

[59]  G. Jaffe On the Theory of Recombination , 1940 .

[60]  C. Baldock,et al.  An evaluation of ionization chambers for the relative dosimetry of kilovoltage x-ray beams. , 2009, Medical physics.

[61]  H. Seemann Messung der Sättigungsstromkurve in Luft, die mit Röntgenstrahlen ionisiert ist , 1912 .

[62]  M. Boutillon Volume recombination parameter in ionization chambers. , 1998, Physics in medicine and biology.

[63]  W. R. Harper Some comments on the relation between ionisation and ionisation current in gases at high pressures , 1933, Mathematical Proceedings of the Cambridge Philosophical Society.

[64]  J. Lambert Photometria sive de mensvra et gradibvs lvminis, colorvm et vmbrae , 1970 .

[65]  A. Nahum,et al.  The IPEMB code of practice for the determination of absorbed dose for x-rays below 300 kV generating potential (0.035 mm Al-4 mm Cu HVL; 10-300 kV generating potential). Institution of Physics and Engineering in Medicine and Biology. , 1996, Physics in medicine and biology.

[66]  Xianbo Shi,et al.  Simulation of X-ray diffraction profiles for bent anisotropic crystals , 2015, 1502.03059.

[67]  A Bravin,et al.  Dosimetry protocol for the forthcoming clinical trials in synchrotron stereotactic radiation therapy (SSRT). , 2011, Medical physics.

[68]  A. Maksimenko,et al.  Pelvic and reproductive structures in placoderms (stem gnathostomes) , 2015, Biological reviews of the Cambridge Philosophical Society.

[69]  A. Stevenson,et al.  In Vitro Study of Genes and Molecular Pathways Differentially Regulated by Synchrotron Microbeam Radiotherapy , 2014, Radiation research.

[70]  Y. Kamiya,et al.  Experiment on direct irradiation of a beryllium window by undulator radiation , 1992 .

[71]  S M Seltzer,et al.  AAPM protocol for 40-300 kV x-ray beam dosimetry in radiotherapy and radiobiology. , 2001, Medical physics.

[72]  I. Cornelius,et al.  High resolution 3D imaging of synchrotron generated microbeams. , 2015, Medical physics.

[73]  James A. Ibers,et al.  International tables for X-ray crystallography , 1962 .

[74]  Y Prezado,et al.  Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy. , 2012, Medical physics.

[75]  L Büermann,et al.  Measurement of the mass energy-absorption coefficient of air for x-rays in the range from 3 to 60 keV , 2012, Physics in medicine and biology.

[76]  H. Kitamura,et al.  Recent Progress of the Synchrotron Radiation Calculation Code SPECTRA , 2007 .

[77]  N. Yagi,et al.  A method of dosimetry for synchrotron microbeam radiation therapy using radiochromic films of different sensitivity , 2008, Physics in medicine and biology.

[78]  J. Kirz,et al.  An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. , 2005, Journal of Electron Spectroscopy and Related Phenomena.

[79]  Anton Maksimenko,et al.  First experiments on the Australian Synchrotron Imaging and Medical beamline, including investigations of the effective source size in respect of X-ray imaging. , 2010, Journal of synchrotron radiation.

[80]  A. Rosenfeld,et al.  Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy. , 2014, Journal of synchrotron radiation.

[81]  M. Tubiana,et al.  ELECTRONIC EQUILIBRIUM AND TRANSITION STAGES. , 1965, Physics in medicine and biology.

[82]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[83]  M. Maryanski,et al.  Characterisation of PRESAGE: A new 3-D radiochromic solid polymer dosemeter for ionising radiation. , 2006, Radiation protection dosimetry.

[84]  S. Shimomura,et al.  Double Bragg scattering observed in small-angle X-ray scattering from highly oriented pyrolytic graphite , 2016 .

[85]  Computed tomography dosimetry with high‐resolution detectors commonly used in radiotherapy — an energy dependence study , 2015, Journal of applied clinical medical physics.

[86]  D. Lea,et al.  The interpretation of ionization measurements in gases at high pressures , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[87]  Jack S. Krohmer,et al.  Introduction to Health Physics , 1969 .

[88]  C. L. Andrews,et al.  The Absorption of X-Rays of Wave-Length1.5≤λ≤8.3A , 1938 .

[89]  D. P. Siddons,et al.  Elemental X-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle , 2009 .

[90]  T. Ishikawa,et al.  Room-temperature calorimeter for x-ray free-electron lasers. , 2015, The Review of scientific instruments.

[91]  U. Lienert,et al.  Microfocusing of hard X-rays with cylindrically bent crystal monochromators. , 1998, Journal of synchrotron radiation.

[92]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[93]  M. Bossolasco Pure and Applied Geophysics (PAGEOPH) , 1966 .

[94]  G Bruggmoser,et al.  Determination of the recombination correction factor kS for some specific plane-parallel and cylindrical ionization chambers in pulsed photon and electron beams , 2007, Physics in medicine and biology.

[95]  F. H. Attix Introduction to Radiological Physics and Radiation Dosimetry , 1991 .

[96]  S. Takagi A Dynamical Theory of Diffraction for a Distorted Crystal , 1969 .

[97]  James Clerk Maxwell,et al.  VIII. A dynamical theory of the electromagnetic field , 1865, Philosophical Transactions of the Royal Society of London.

[98]  J. Laissue,et al.  Better Efficacy of Synchrotron Spatially Microfractionated Radiation Therapy Than Uniform Radiation Therapy on Glioma. , 2016, International journal of radiation oncology, biology, physics.

[99]  A. Stevenson,et al.  Reflectivity (rocking) curves of imperfect crystals by an improved Δω, Δ2Θ technique , 1985 .

[100]  S M Seltzer,et al.  Calculation of photon mass energy-transfer and mass energy-absorption coefficients. , 1993, Radiation research.

[101]  H.W. Kraner,et al.  Radiation detection and measurement , 1981, Proceedings of the IEEE.

[102]  Bernd Grosswendt,et al.  Dependence of the photon backscatter factor for water on source-to-phantom distance and irradiation field size , 1990 .

[103]  M. Butson,et al.  Dose response of various radiation detectors to synchrotron radiation. , 1998, Physics in medicine and biology.

[104]  J. Boag,et al.  The saturation curve at high ionization intensity , 1952 .

[105]  S. Takagi Dynamical theory of diffraction applicable to crystals with any kind of small distortion , 1962 .

[106]  John S. Townsend,et al.  The Theory of Ionization of Gases by Collision , 2007 .

[107]  D. Burns,et al.  Free-air ionization chambers , 2009 .

[108]  G. Knoll Radiation Detection And Measurement, 3rd Ed , 2009 .

[109]  Comments on `Ion recombination corrections for plane-parallel and thimble chambers in electron and photon radiation' , 1993 .

[110]  S. McGowan ION-ION RECOMBINATION IN LABORATORY AIR. , 1965, Physics in medicine and biology.

[111]  Beer Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten , 1852 .

[112]  F. Gómez,et al.  A comparison of different experimental methods for general recombination correction for liquid ionization chambers , 2012, Physics in medicine and biology.

[113]  E. M. Rowe,et al.  Preliminary Design of a Dedicated Synchrotron Radiation Facility , 1975, IEEE Transactions on Nuclear Science.

[114]  S. Wilkins,et al.  Analysis and interpretation of the first monochromatic X-ray tomography data collected at the Australian Synchrotron Imaging and Medical beamline. , 2012, Journal of synchrotron radiation.

[115]  BouguerPierre,et al.  Essai d'optique sur la gradation de la lumière , 1922, Nature.

[116]  W. Thomlinson,et al.  X-ray reflectivity of bent perfect crystals in Bragg and Laue geometry , 1990 .

[117]  Roger J. Dejus,et al.  XOP v2.4: recent developments of the x-ray optics software toolkit , 2011, Optical Engineering + Applications.

[118]  John J. Hall,et al.  Electronic Effects in the Elastic Constants of n -Type Silicon , 1967 .

[119]  Rosemary T. Berger,et al.  THE X- OR GAMMA-RAY ENERGY ABSORPTION OR TRANSFER COEFFICIENT: TABULATIONS AND DISCUSSION , 1961 .

[120]  K Zink,et al.  Thimble ionization chambers in medium-energy x-ray beams and the role of constructive details of the central electrode: Monte Carlo simulations and measurements , 2008, Physics in medicine and biology.

[121]  P. Suortti,et al.  Whole-pattern fitting in energy-dispersive powder diffraction , 1992 .

[122]  J. H. Hubbell,et al.  Review of photon interaction cross section data in the medical and biological context. , 1999, Physics in medicine and biology.

[123]  R. Faghihi,et al.  Fast and accurate Monte Carlo modeling of a kilovoltage X-ray therapy unit using a photon-source approximation for treatment planning in complex media , 2015, Journal of medical physics.

[124]  F. T. Farmer A sub-standard x-ray dose-meter. , 1955, The British journal of radiology.

[125]  Takashi Tanaka Numerical methods for characterization of synchrotron radiation based on the Wigner function method , 2014 .

[126]  P. Turner,et al.  Relativistic Hartree–Fock X‐ray and electron scattering factors , 1968 .

[127]  J. Boag General recombination in a standard parallel-plate free-air ionization chamber , 1969 .

[128]  Marianne Geiser,et al.  Neuropathology of ablation of rat gliosarcomas and contiguous brain tissues using a microplanar beam of synchrotron‐wiggler‐generated X rays , 1998, International journal of cancer.

[129]  Alberto Bravin,et al.  Weanling piglet cerebellum: a surrogate for tolerance to MRT (microbeam radiation therapy) in pediatric neuro-oncology , 2001, Optics + Photonics.

[130]  P Suortti,et al.  Fixed-exit monochromators for high-energy synchrotron radiation. , 1995, Journal of synchrotron radiation.

[131]  A. Stevenson,et al.  An Evaluation of Dose Equivalence between Synchrotron Microbeam Radiation Therapy and Conventional Broadbeam Radiation Using Clonogenic and Cell Impedance Assays , 2014, PloS one.

[132]  N. Nariyama Ion recombination in parallel-plate free-air ionization chambers for synchrotron radiation , 2006, Physics in medicine and biology.

[133]  J. Bohm,et al.  Saturation corrections for plane-parallel ionisation chambers , 1976, Physics in medicine and biology.

[134]  Kwang‐Je Kim,et al.  Characteristics of synchrotron radiation , 1989 .

[135]  N. Nariyama Characteristics of a miniature parallel-plate free-air ionization chamber for measuring the intensity of synchrotron radiation from an undulator , 2004 .

[136]  J. Greening,et al.  Recombination in parallel plate free-air ionization chambers. , 1961, The British journal of radiology.

[137]  R. Dinapoli,et al.  Medipix2: A 64-k pixel readout chip with 55-/spl mu/m square elements working in single photon counting mode , 2001 .

[138]  A. Stevenson,et al.  Energy spectra considerations for synchrotron radiotherapy trials on the ID17 bio-medical beamline at the European Synchrotron Radiation Facility. , 2015, Journal of synchrotron radiation.

[139]  G. Mie Der elektrische Strom in ionisierter Luft in einem ebenen Kondensator , 1904 .

[140]  P. Almond Use of a Victoreen 500 electrometer to determine ionization chamber collection efficiencies. , 1981, Medical physics.

[141]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[142]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[143]  L. Holloway,et al.  A dosimetric evaluation of water equivalent phantoms for kilovoltage x-ray beams , 2005, Physics in medicine and biology.

[144]  N. Bradbury Preferential and Initial Ionic Recombination in Gases , 1940 .

[145]  C. P. Baker,et al.  Histopathologic effect of high-energy-particle microbeams on the visual cortex of the mouse brain. , 1961, Radiation research.

[146]  Uwe Oelfke,et al.  Conformal image-guided microbeam radiation therapy at the ESRF biomedical beamline ID17. , 2016, Medical physics.

[147]  L. Holloway,et al.  Advances in kilovoltage x-ray beam dosimetry , 2014, Physics in medicine and biology.

[148]  G. Zschornack Handbook of X-Ray Data , 2007 .

[149]  H. Menzel,et al.  The International Commission on Radiation Units and Measurements , 2011, Journal of the ICRU.

[150]  Frank Herbert Attix,et al.  Introduction to Radiological Physics and Radiation Dosimetry: Attix/Introduction , 2007 .

[151]  B. Warren,et al.  An X‐Ray Study of Carbon Black , 1942 .