The evolution of genome mining in microbes - a review.

Covering: 2006 to 2016The computational mining of genomes has become an important part in the discovery of novel natural products as drug leads. Thousands of bacterial genome sequences are publically available these days containing an even larger number and diversity of secondary metabolite gene clusters that await linkage to their encoded natural products. With the development of high-throughput sequencing methods and the wealth of DNA data available, a variety of genome mining methods and tools have been developed to guide discovery and characterisation of these compounds. This article reviews the development of these computational approaches during the last decade and shows how the revolution of next generation sequencing methods has led to an evolution of various genome mining approaches, techniques and tools. After a short introduction and brief overview of important milestones, this article will focus on the different approaches of mining genomes for secondary metabolites, from detecting biosynthetic genes to resistance based methods and "evo-mining" strategies including a short evaluation of the impact of the development of genome mining methods and tools on the field of natural products and microbial ecology.

[1]  M. Marahiel,et al.  Lasso peptides from proteobacteria: Genome mining employing heterologous expression and mass spectrometry. , 2013, Biopolymers.

[2]  Daniel W. Udwary,et al.  Type III polyketide synthase beta-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. , 2006, Journal of the American Chemical Society.

[3]  R. Müller,et al.  Myxobacteria: proficient producers of novel natural products with various biological activities--past and future biotechnological aspects with the focus on the genus Sorangium. , 2003, Journal of biotechnology.

[4]  Tilmann Weber,et al.  Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs) , 2005, Nucleic acids research.

[5]  H. Matter,et al.  Targeting DnaN for tuberculosis therapy using novel griselimycins , 2015, Science.

[6]  Peter Man-Un Ung,et al.  Automated genome mining for natural products , 2009, BMC Bioinformatics.

[7]  T. Thomas,et al.  Deep sequencing of non-ribosomal peptide synthetases and polyketide synthases from the microbiomes of Australian marine sponges , 2013, The ISME Journal.

[8]  M. Bibb,et al.  Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes , 2010, Proceedings of the National Academy of Sciences.

[9]  Paula Y. Calle,et al.  Discovery and synthetic refactoring of tryptophan dimer gene clusters from the environment. , 2013, Journal of the American Chemical Society.

[10]  J. Ravel,et al.  Origin and variation of tunicate secondary metabolites. , 2012, Journal of natural products.

[11]  D. Haft,et al.  SMURF: Genomic mapping of fungal secondary metabolite clusters. , 2010, Fungal genetics and biology : FG & B.

[12]  Pieter C. Dorrestein,et al.  A mass spectrometry-guided genome mining approach for natural product peptidogenomics , 2011, Nature chemical biology.

[13]  Sean F. Brady,et al.  Chemical-biogeographic survey of secondary metabolism in soil , 2014, Proceedings of the National Academy of Sciences.

[14]  C. Hertweck,et al.  The molecular basis of conjugated polyyne biosynthesis in phytopathogenic bacteria. , 2014, Angewandte Chemie.

[15]  Christophe Corre,et al.  Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens , 2011, Proceedings of the National Academy of Sciences.

[16]  Carla S. Jones,et al.  Minimum Information about a Biosynthetic Gene cluster. , 2015, Nature chemical biology.

[17]  A. L. Demain,et al.  Antimicrobials, drug discovery, and genome mining , 2012, Applied Microbiology and Biotechnology.

[18]  Andrew W. Han,et al.  Genome streamlining and chemical defense in a coral reef symbiosis , 2012, Proceedings of the National Academy of Sciences.

[19]  David J Newman,et al.  Natural products as sources of new drugs over the 30 years from 1981 to 2010. , 2012, Journal of natural products.

[20]  Gerard D. Wright,et al.  Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. , 2013, International journal of medical microbiology : IJMM.

[21]  H. Ikeda,et al.  Genetic studies of avermectin biosynthesis in Streptomyces avermitilis , 1987, Journal of bacteriology.

[22]  Christopher T. Walsh,et al.  The evolution of gene collectives: How natural selection drives chemical innovation , 2008, Proceedings of the National Academy of Sciences.

[23]  A. Davidson,et al.  A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. , 2009, Journal of the American Chemical Society.

[24]  Oscar P. Kuipers,et al.  BAGEL2: mining for bacteriocins in genomic data , 2010, Nucleic Acids Res..

[25]  Harald Gross,et al.  Overproduction of Ristomycin A by Activation of a Silent Gene Cluster in Amycolatopsis japonicum MG417-CF17 , 2014, Antimicrobial Agents and Chemotherapy.

[26]  V. Deshpande,et al.  Bacteriophage Lambda as a Cloning Vector , 1992, Microbiological reviews.

[27]  R. Gonzalez From the New Editor-in-Chief , 2015, Journal of Industrial Microbiology & Biotechnology.

[28]  D. Hopwood,et al.  CDA is a new chromosomally-determined antibiotic from Streptomyces coelicolor A3(2). , 1983, Journal of general microbiology.

[29]  B. Shen,et al.  Enediynes: Exploration of microbial genomics to discover new anticancer drug leads , 2014, Bioorganic & medicinal chemistry letters.

[30]  Mark Hildebrand,et al.  Identification of the putative bryostatin polyketide synthase gene cluster from "Candidatus Endobugula sertula", the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. , 2007, Journal of natural products.

[31]  Nicholas Waglechner,et al.  Identifying producers of antibacterial compounds by screening for antibiotic resistance , 2013, Nature Biotechnology.

[32]  Emmanuel Zazopoulos,et al.  Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. , 2005, Journal of natural products.

[33]  M. Fischbach,et al.  Small molecules from the human microbiota , 2015, Science.

[34]  T. Hemscheidt,et al.  Post‐translational Modification in Microviridin Biosynthesis , 2008, Chembiochem : a European journal of chemical biology.

[35]  Roger G. Linington,et al.  Genome-Directed Lead Discovery: Biosynthesis, Structure Elucidation, and Biological Evaluation of Two Families of Polyene Macrolactams against Trypanosoma brucei. , 2015, ACS chemical biology.

[36]  Liisa Holm,et al.  Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes , 2014, Proceedings of the National Academy of Sciences.

[37]  Michael Gale,et al.  Genetic Diversity in the Collaborative Cross Model Recapitulates Human West Nile Virus Disease Outcomes , 2015, mBio.

[38]  M. Staver,et al.  Cloning of genes involved in erythromycin biosynthesis from Saccharopolyspora erythraea using a novel actinomycete-Escherichia coli cosmid. , 1990, Gene.

[39]  Chiaki Nakano,et al.  Identification of the First Bacterial Monoterpene Cyclase, a 1,8‐Cineole Synthase, that Catalyzes the Direct Conversion of Geranyl Diphosphate , 2011, Chembiochem : a European journal of chemical biology.

[40]  J. Zucko,et al.  ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures , 2008, Nucleic acids research.

[41]  C. Kerfeld,et al.  Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria , 2014, BMC Genomics.

[42]  Mihai Pop,et al.  ARDB—Antibiotic Resistance Genes Database , 2008, Nucleic Acids Res..

[43]  J. Merritt,et al.  Mutanobactin A from the human oral pathogen Streptococcus mutans is a cross-kingdom regulator of the yeast-mycelium transition. , 2010, Organic & biomolecular chemistry.

[44]  S. Holmström,et al.  Siderophores in environmental research: roles and applications , 2014, Microbial biotechnology.

[45]  O. Kohlbacher,et al.  The bifunctional role of aconitase in Streptomyces viridochromogenes Tü494. , 2012, Environmental microbiology.

[46]  B. Birren,et al.  Stable propagation of cosmid sized human DNA inserts in an F factor based vector. , 1992, Nucleic acids research.

[47]  S. Lee,et al.  Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. , 2015, Trends in biotechnology.

[48]  F. Barona-Gómez,et al.  Recapitulation of the evolution of biosynthetic gene clusters reveals hidden chemical diversity on bacterial genomes , 2015 .

[49]  Gitanjali Yadav,et al.  SEARCHPKS: a program for detection and analysis of polyketide synthase domains , 2003, Nucleic Acids Res..

[50]  Hong Xu,et al.  Systematic unravelling of the biosynthesis of poly (L-diaminopropionic acid) in Streptomyces albulus PD-1 , 2015, Scientific Reports.

[51]  Michael Gribskov,et al.  Methods and Statistics for Combining Motif Match Scores , 1998, J. Comput. Biol..

[52]  M. Nett Genome mining: concept and strategies for natural product discovery. , 2014, Progress in the chemistry of organic natural products.

[53]  J. Badger,et al.  The Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity , 2012, PloS one.

[54]  Clay C C Wang,et al.  Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in Aspergillus nidulans , 2014, Journal of Industrial Microbiology & Biotechnology.

[55]  G. V. van Wezel,et al.  Natural product proteomining, a quantitative proteomics platform, allows rapid discovery of biosynthetic gene clusters for different classes of natural products. , 2014, Chemistry & biology.

[56]  R. Müller,et al.  Discovery of the Rhizopodin Biosynthetic Gene Cluster in Stigmatella aurantiaca Sg a15 by Genome Mining , 2012, Chembiochem : a European journal of chemical biology.

[57]  M. Marahiel,et al.  Caulosegnins I-III: a highly diverse group of lasso peptides derived from a single biosynthetic gene cluster. , 2013, Journal of the American Chemical Society.

[58]  Viral diversity and clonal evolution from unphased genomic data , 2014, BMC Genomics.

[59]  Michael A Fischbach,et al.  Computational approaches to natural product discovery. , 2015, Nature chemical biology.

[60]  Jennifer A. Doudna,et al.  DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 , 2014, Nature.

[61]  R. Süssmuth,et al.  A Genomic Screening Approach to the Structure‐Guided Identification of Drug Candidates from Natural Sources , 2007, Chembiochem : a European journal of chemical biology.

[62]  M. Schorn,et al.  Genetic basis for the biosynthesis of the pharmaceutically important class of epoxyketone proteasome inhibitors. , 2014, ACS chemical biology.

[63]  Neetika Nath,et al.  CASSIS and SMIPS: promoter-based prediction of secondary metabolite gene clusters in eukaryotic genomes , 2015, Bioinform..

[64]  J. Eisen,et al.  Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J B McAlpine,et al.  Modular organization of genes required for complex polyketide biosynthesis. , 1991, Science.

[66]  T. V. van Beek,et al.  Genome‐based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species , 2007, Molecular microbiology.

[67]  I. Abe,et al.  Pyranonigrin E: A PKS‐NRPS Hybrid Metabolite from Aspergillus niger Identified by Genome Mining , 2013, Chembiochem : a European journal of chemical biology.

[68]  T. Weber,et al.  Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365 , 2016, Journal of Industrial Microbiology & Biotechnology.

[69]  Sylvie Lautru,et al.  Discovery of a new peptide natural product by Streptomyces coelicolor genome mining , 2005, Nature chemical biology.

[70]  Paula Y. Calle,et al.  Multiplexed metagenome mining using short DNA sequence tags facilitates targeted discovery of epoxyketone proteasome inhibitors , 2015, Proceedings of the National Academy of Sciences.

[71]  D. Hopwood,et al.  Actinorhodin is a chromosomally-determined antibiotic in Streptomyces coelicolar A3(2). , 1976, Journal of general microbiology.

[72]  H. Jenke-Kodama,et al.  Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection , 2008, Nature Biotechnology.

[73]  Jörn Piel,et al.  A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[74]  M. Bibb,et al.  Streptomyces coelicolor as an expression host for heterologous gene clusters. , 2012, Methods in enzymology.

[75]  M. Donia,et al.  Linking chemistry and genetics in the growing cyanobactin natural products family. , 2011, Chemistry & biology.

[76]  M. Ojika,et al.  Isolation and Biosynthetic Analysis of Haliamide, a New PKS-NRPS Hybrid Metabolite from the Marine Myxobacterium Haliangium ochraceum , 2016, Molecules.

[77]  Imke Schmitt,et al.  Phylogenetic methods in natural product research. , 2009, Natural product reports.

[78]  G. Challis,et al.  2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining , 2008, Proceedings of the National Academy of Sciences.

[79]  G. B. Golding,et al.  Antibiotic resistance is ancient , 2011, Nature.

[80]  Krystle L. Chavarria,et al.  Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora , 2014, Proceedings of the National Academy of Sciences.

[81]  P. Mäntsälä,et al.  Molecular Evolution of Aromatic Polyketides and Comparative Sequence Analysis of Polyketide Ketosynthase and 16S Ribosomal DNA Genes from Various Streptomyces Species , 2002, Applied and Environmental Microbiology.

[82]  Dan Søndergaard,et al.  Computational discovery of specificity-conferring sites in non-ribosomal peptide synthetases , 2016, Bioinform..

[83]  Mikael R. Andersen,et al.  Accurate prediction of secondary metabolite gene clusters in filamentous fungi , 2012, Proceedings of the National Academy of Sciences.

[84]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[85]  Tilmann Weber,et al.  The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production , 2016, Synthetic and systems biotechnology.

[86]  Brian O. Bachmann,et al.  Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? , 2014, Journal of Industrial Microbiology & Biotechnology.

[87]  Victor M. Markowitz,et al.  IMG-ABC: A Knowledge Base To Fuel Discovery of Biosynthetic Gene Clusters and Novel Secondary Metabolites , 2015, mBio.

[88]  Oscar P. Kuipers,et al.  BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides , 2013, Nucleic Acids Res..

[89]  Ronald W Davis,et al.  Computational identification and analysis of orphan assembly-line polyketide synthases , 2013, The Journal of Antibiotics.

[90]  Roger G. Linington,et al.  Insights into Secondary Metabolism from a Global Analysis of Prokaryotic Biosynthetic Gene Clusters , 2014, Cell.

[91]  B. Roe,et al.  Genomic Island TnSmu2 of Streptococcus mutans Harbors a Nonribosomal Peptide Synthetase-Polyketide Synthase Gene Cluster Responsible for the Biosynthesis of Pigments Involved in Oxygen and H2O2 Tolerance , 2010, Applied and Environmental Microbiology.

[92]  Oscar P. Kuipers,et al.  BAGEL: a web-based bacteriocin genome mining tool , 2006, Nucleic Acids Res..

[93]  E. Dittmann,et al.  Cyanobacteria as a source of natural products. , 2012, Methods in enzymology.

[94]  Susana P. Gaudêncio,et al.  Sequence-Based Analysis of Secondary-Metabolite Biosynthesis in Marine Actinobacteria , 2010, Applied and Environmental Microbiology.

[95]  J. Asenjo,et al.  Chaxapeptin, a Lasso Peptide from Extremotolerant Streptomyces leeuwenhoekii Strain C58 from the Hyperarid Atacama Desert. , 2015, The Journal of organic chemistry.

[96]  J. Recktenwald,et al.  Identification and Analysis of the Balhimycin Biosynthetic Gene Cluster and Its Use for Manipulating Glycopeptide Biosynthesis in Amycolatopsis mediterranei DSM5908 , 1999, Antimicrobial Agents and Chemotherapy.

[97]  G. Challis,et al.  PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[98]  M. Smanski,et al.  Mechanisms of self-resistance in the platensimycin- and platencin-producing Streptomyces platensis MA7327 and MA7339 strains. , 2014, Chemistry & biology.

[99]  Gilles P van Wezel,et al.  The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. , 2011, Natural product reports.

[100]  Neil L Kelleher,et al.  A Roadmap for Natural Product Discovery Based on Large-Scale Genomics and Metabolomics , 2014, Nature chemical biology.

[101]  Kai Blin,et al.  antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences , 2011, Nucleic Acids Res..

[102]  F. Ayala “Nothing in biology makes sense except in the light of evolution” Theodosius Dobzhansky: 1900–1975 , 1977 .

[103]  J. Martín,et al.  Evolution of the clusters of genes for β-lactam antibiotics: a model for evolutive combinatorial assembly of new β-lactams , 1998 .

[104]  Nuno Bandeira,et al.  MS/MS networking guided analysis of molecule and gene cluster families , 2013, Proceedings of the National Academy of Sciences.

[105]  R. Gibbs,et al.  Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology , 2012, PloS one.

[106]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[107]  Michael A. Skinnider,et al.  Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM) , 2015, Nucleic acids research.

[108]  Gitanjali Yadav,et al.  NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases , 2004, Nucleic Acids Res..

[109]  Wenjun Zhang,et al.  Bacterial Genome Mining of Enzymatic Tools for Alkyne Biosynthesis. , 2015, ACS chemical biology.

[110]  Shawn French,et al.  Assembly and clustering of natural antibiotics guides target identification. , 2016, Nature chemical biology.

[111]  P. Dorrestein,et al.  Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds , 2015, Front. Microbiol..

[112]  C. Hertweck,et al.  A genomic approach to the cryptic secondary metabolome of the anaerobic world. , 2013, Natural product reports.

[113]  M. Moffitt,et al.  Genome mining for natural product biosynthetic gene clusters in the Subsection V cyanobacteria , 2015, BMC Genomics.

[114]  Jurica Zucko,et al.  Horizontal gene transfer and gene conversion drive evolution of modular polyketide synthases , 2012, Journal of Industrial Microbiology & Biotechnology.

[115]  K. Lewis,et al.  A new antibiotic kills pathogens without detectable resistance , 2015, Nature.

[116]  Kai Blin,et al.  antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers , 2013, Nucleic Acids Res..

[117]  M. Marahiel,et al.  Lasso peptides: an intriguing class of bacterial natural products. , 2015, Accounts of chemical research.

[118]  D. Hopwood,et al.  Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host , 1984, Nature.

[119]  C. Fraser,et al.  Phylogenomics: Intersection of Evolution and Genomics , 2003, Science.

[120]  R. Müller,et al.  Myxobacteria--'microbial factories' for the production of bioactive secondary metabolites. , 2009, Molecular bioSystems.

[121]  J. Sohng,et al.  Genome-based cryptic gene discovery and functional identification of NRPS siderophore peptide in Streptomyces peucetius , 2012, Applied Microbiology and Biotechnology.

[122]  William Fenical,et al.  Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica , 2007, Proceedings of the National Academy of Sciences.

[123]  M. Thaker,et al.  Antibiotic resistance–mediated isolation of scaffold-specific natural product producers , 2014, Nature Protocols.

[124]  R. Ueoka,et al.  Metabolic and evolutionary origin of actin-binding polyketides from diverse organisms. , 2015, Nature chemical biology.

[125]  Jacques Ravel,et al.  Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians , 2006, Nature chemical biology.

[126]  I. Hoof,et al.  CLUSEAN: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. , 2009, Journal of biotechnology.

[127]  G. Berg,et al.  The Novel Lipopeptide Poaeamide of the Endophyte Pseudomonas poae RE*1-1-14 Is Involved in Pathogen Suppression and Root Colonization. , 2015, Molecular plant-microbe interactions : MPMI.

[128]  Kai Blin,et al.  NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity , 2011, Nucleic Acids Res..

[129]  R. Breitling,et al.  Detecting Sequence Homology at the Gene Cluster Level with MultiGeneBlast , 2013, Molecular biology and evolution.

[130]  P. Dorrestein,et al.  Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A , 2014, Proceedings of the National Academy of Sciences.

[131]  M. Marahiel,et al.  Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. , 2008, Journal of the American Chemical Society.

[132]  K. Sivonen,et al.  Widespread Occurrence and Lateral Transfer of the Cyanobactin Biosynthesis Gene Cluster in Cyanobacteria , 2008, Applied and Environmental Microbiology.

[133]  Yoshiyuki Sakaki,et al.  Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis , 2003, Nature Biotechnology.

[134]  S. Brady,et al.  Mining Soil Metagenomes to Better Understand the Evolution of Natural Product Structural Diversity: Pentangular Polyphenols as a Case Study , 2014, Journal of the American Chemical Society.

[135]  David J Newman,et al.  Natural products: a continuing source of novel drug leads. , 2013, Biochimica et biophysica acta.

[136]  J. Piel,et al.  Recent advances in genome-based polyketide discovery. , 2014, Current opinion in biotechnology.

[137]  M. Bibb,et al.  Discovery of Unique Lanthionine Synthetases Reveals New Mechanistic and Evolutionary Insights , 2010, PLoS biology.

[138]  M. Marahiel,et al.  Xanthomonins I-III: a new class of lasso peptides with a seven-residue macrolactam ring. , 2014, Angewandte Chemie.

[139]  C. Hertweck,et al.  Multifactorial induction of an orphan PKS-NRPS gene cluster in Aspergillus terreus. , 2011, Chemistry & biology.

[140]  J. Solbiati,et al.  Genetic analysis of plasmid determinants for microcin J25 production and immunity , 1996, Journal of bacteriology.

[141]  J. Nielsen,et al.  Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster. , 2010, Metabolic engineering.

[142]  Chad W. Johnston,et al.  Dereplicating nonribosomal peptides using an informatic search algorithm for natural products (iSNAP) discovery , 2012, Proceedings of the National Academy of Sciences.

[143]  Peter Cimermancic,et al.  A Systematic Analysis of Biosynthetic Gene Clusters in the Human Microbiome Reveals a Common Family of Antibiotics , 2014, Cell.

[144]  S. Brady,et al.  eSNaPD: a versatile, web-based bioinformatics platform for surveying and mining natural product biosynthetic diversity from metagenomes. , 2014, Chemistry & biology.

[145]  S. Duquesne,et al.  Two enzymes catalyze the maturation of a lasso peptide in Escherichia coli. , 2007, Chemistry & biology.

[146]  H. Koike,et al.  Motif-independent de novo detection of secondary metabolite gene clusters—toward identification from filamentous fungi , 2015, Front. Microbiol..

[147]  I. Abe,et al.  Three Acyltetronic Acid Derivatives: Noncanonical Cryptic Polyketides from Aspergillus niger Identified by Genome Mining , 2014, Chembiochem : a European journal of chemical biology.

[148]  Jurica Zucko,et al.  Predicting substrate specificity of adenylation domains of nonribosomal peptide synthetases and other protein properties by latent semantic indexing , 2013, Journal of Industrial Microbiology & Biotechnology.

[149]  Paula Y. Calle,et al.  Targeted metagenomics: finding rare tryptophan dimer natural products in the environment. , 2015, Journal of the American Chemical Society.

[150]  J. Solbiati,et al.  Sequence Analysis of the Four Plasmid Genes Required To Produce the Circular Peptide Antibiotic Microcin J25 , 1999, Journal of bacteriology.

[151]  M. Bibb,et al.  Regulation of secondary metabolism in streptomycetes. , 2005, Current opinion in microbiology.

[152]  Carlos Prieto,et al.  NRPSsp: non-ribosomal peptide synthase substrate predictor , 2012, Bioinform..

[153]  Harald Gross,et al.  The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. , 2007, Chemistry & biology.

[154]  Pieter C Dorrestein,et al.  Combining Mass Spectrometric Metabolic Profiling with Genomic Analysis: A Powerful Approach for Discovering Natural Products from Cyanobacteria. , 2015, Journal of natural products.

[155]  C. Hertweck,et al.  Anaerobic bacteria as producers of antibiotics , 2012, Applied Microbiology and Biotechnology.

[156]  B. Moore,et al.  Identification of Thiotetronic Acid Antibiotic Biosynthetic Pathways by Target-directed Genome Mining. , 2015, ACS chemical biology.

[157]  J. Eisen,et al.  Phylogenetic analysis and gene functional predictions: phylogenomics in action. , 2002, Theoretical population biology.

[158]  B. Bohannan,et al.  The Biogeography of Putative Microbial Antibiotic Production , 2015, PloS one.

[159]  B. Shen,et al.  Genome neighborhood network reveals insights into enediyne biosynthesis and facilitates prediction and prioritization for discovery , 2016, Journal of Industrial Microbiology & Biotechnology.

[160]  Julian Brandl,et al.  FunGeneClusterS: Predicting fungal gene clusters from genome and transcriptome data , 2016, Synthetic and systems biotechnology.

[161]  J. Pernodet,et al.  Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens. , 2007, Microbiology.

[162]  P. Permi,et al.  Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides. , 2013, Chemistry & biology.

[163]  Gregory L. Challis,et al.  Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[164]  Christopher N. Boddy,et al.  Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides , 2014, Journal of Industrial Microbiology & Biotechnology.

[165]  Pieter C. Dorrestein,et al.  An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria , 2016, mSystems.

[166]  T. Ravasi,et al.  Actinomycetes from Red Sea Sponges: Sources for Chemical and Phylogenetic Diversity , 2014, Marine drugs.

[167]  R. Saha,et al.  Microbial siderophores: a mini review , 2013, Journal of basic microbiology.

[168]  Nuno Bandeira,et al.  Automated Genome Mining of Ribosomal Peptide Natural Products , 2014, ACS chemical biology.

[169]  G. V. van Wezel,et al.  Unsuspected control of siderophore production by N-acetylglucosamine in streptomycetes. , 2012, Environmental microbiology reports.

[170]  J. Imhoff,et al.  Streptocollin, a Type IV Lanthipeptide Produced by Streptomyces collinus Tü 365 , 2015, Chembiochem : a European journal of chemical biology.

[171]  Tilmann Weber,et al.  In silico tools for the analysis of antibiotic biosynthetic pathways. , 2014, International journal of medical microbiology : IJMM.

[172]  T. Weber,et al.  Exploiting the genetic potential of polyketide producing streptomycetes. , 2003, Journal of biotechnology.

[173]  Douglas A Mitchell,et al.  Using Genomics for Natural Product Structure Elucidation. , 2016, Current topics in medicinal chemistry.

[174]  Raphaël Marée,et al.  PREDetector: a new tool to identify regulatory elements in bacterial genomes. , 2007, Biochemical and biophysical research communications.

[175]  M. Fillat The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. , 2014, Archives of biochemistry and biophysics.

[176]  L. Heide,et al.  Identification of the Novobiocin Biosynthetic Gene Cluster of Streptomyces spheroides NCIB 11891 , 2000, Antimicrobial Agents and Chemotherapy.

[177]  A. Singh,et al.  Activation of the SoxR Regulon in Streptomyces coelicolor by the Extracellular Form of the Pigmented Antibiotic Actinorhodin , 2010, Journal of bacteriology.

[178]  Christian Rinke,et al.  An environmental bacterial taxon with a large and distinct metabolic repertoire , 2014, Nature.

[179]  Thomas E. Ferrin,et al.  Using Sequence Similarity Networks for Visualization of Relationships Across Diverse Protein Superfamilies , 2009, PloS one.

[180]  J. Sohng,et al.  Identification ofStreptomyces violaceoruber Tü22 genes involved in the biosynthesis of granaticin , 1995, Molecular and General Genetics MGG.

[181]  E. Dittmann,et al.  Exploiting the Natural Diversity of Microviridin Gene Clusters for Discovery of Novel Tricyclic Depsipeptides , 2010, Applied and Environmental Microbiology.

[182]  H. Jenke-Kodama,et al.  Evolution of metabolic diversity: insights from microbial polyketide synthases. , 2009, Phytochemistry.

[183]  E. Dittmann,et al.  Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria. , 2008, Angewandte Chemie.

[184]  W. Wohlleben,et al.  Elucidation of the zinc-dependent regulation in Amycolatopsis japonicum enabled the identification of the ethylenediamine-disuccinate ([S,S]-EDDS) genes. , 2016, Environmental microbiology.

[185]  I. Pelczer,et al.  Precursor-centric genome-mining approach for lasso peptide discovery , 2012, Proceedings of the National Academy of Sciences.

[186]  Chiaki Nakano,et al.  Identification of a New Diterpene Biosynthetic Gene Cluster that Produces O‐Methylkolavelool in Herpetosiphon aurantiacus , 2015, Chembiochem : a European journal of chemical biology.

[187]  M. Forsman,et al.  Scaffolding of a bacterial genome using MinION nanopore sequencing , 2015, Scientific Reports.

[188]  Bradley S Moore,et al.  Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules , 2013, Proceedings of the National Academy of Sciences.

[189]  Rainer Breitling,et al.  Pep2Path: Automated Mass Spectrometry-Guided Genome Mining of Peptidic Natural Products , 2014, PLoS Comput. Biol..

[190]  Jörn Piel,et al.  Metagenome Mining Reveals Polytheonamides as Posttranslationally Modified Ribosomal Peptides , 2012, Science.

[191]  Thomas Börner,et al.  Natural Biocombinatorics in the Polyketide Synthase Genes of the Actinobacterium Streptomyces avermitilis , 2006, PLoS Comput. Biol..

[192]  B. Rudd,et al.  Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2). , 1979, Journal of general microbiology.

[193]  Sailu Yellaboina,et al.  IdeR in Mycobacteria: From Target Recognition to Physiological Function , 2006, Critical reviews in microbiology.

[194]  M. Nishiyama,et al.  Identification and Characterization of Bacterial Diterpene Cyclases that Synthesize the Cembrane Skeleton , 2013, Chembiochem : a European journal of chemical biology.

[195]  Corinna Lange,et al.  Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. , 2007, Nature chemical biology.

[196]  Paul D. Cotter,et al.  Identification of a Novel Two-Peptide Lantibiotic, Lichenicidin, following Rational Genome Mining for LanM Proteins , 2009, Applied and Environmental Microbiology.

[197]  W. Metcalf,et al.  Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes , 2013, BMC Genomics.

[198]  Kiyoshi Asai,et al.  MIDDAS-M: Motif-Independent De Novo Detection of Secondary Metabolite Gene Clusters through the Integration of Genome Sequencing and Transcriptome Data , 2013, PloS one.

[199]  Cody R. Goodwin,et al.  Structuring Microbial Metabolic Responses to Multiplexed Stimuli via Self-Organizing Metabolomics Maps. , 2015, Chemistry & biology.

[200]  Gang Liu,et al.  Molecular Regulation of Antibiotic Biosynthesis in Streptomyces , 2013, Microbiology and Molecular Reviews.

[201]  I. Abe,et al.  Molecular Basis for Stellatic Acid Biosynthesis: A Genome Mining Approach for Discovery of Sesterterpene Synthases. , 2015, Organic letters.

[202]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[203]  Yuuki Yamada,et al.  Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host , 2015, The Journal of Antibiotics.

[204]  B. Barrell,et al.  Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) , 2002, Nature.

[205]  D. Christianson Unearthing the roots of the terpenome. , 2008, Current opinion in chemical biology.

[206]  Pavel A. Pevzner,et al.  NRPquest: Coupling Mass Spectrometry and Genome Mining for Nonribosomal Peptide Discovery , 2014, Journal of natural products.

[207]  Kai Blin,et al.  antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters , 2015, Nucleic Acids Res..

[208]  E. Dittmann,et al.  Leader peptide and a membrane protein scaffold guide the biosynthesis of the tricyclic peptide microviridin. , 2011, Chemistry & biology.

[209]  Jörn Piel,et al.  Biosynthesis of polyketides by trans-AT polyketide synthases. , 2016, Natural product reports.

[210]  Andrew C. Pawlowski,et al.  The Comprehensive Antibiotic Resistance Database , 2013, Antimicrobial Agents and Chemotherapy.

[211]  Anna Lechner,et al.  Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. , 2015, Chemistry and Biology.

[212]  Brian O. Bachmann,et al.  A genomics-guided approach for discovering and expressing cryptic metabolic pathways , 2003, Nature Biotechnology.

[213]  D. Buckley,et al.  Intraspecies comparison of Streptomyces pratensis genomes reveals high levels of recombination and gene conservation between strains of disparate geographic origin , 2014, BMC Genomics.

[214]  S. Lautru,et al.  An iterative nonribosomal peptide synthetase assembles the pyrrole-amide antibiotic congocidine in Streptomyces ambofaciens. , 2009, Chemistry & biology.

[215]  S. Sudek,et al.  Genetic evidence supports secondary metabolic diversity in Prochloron spp., the cyanobacterial symbiont of a tropical ascidian. , 2004, Journal of natural products.

[216]  Morgan A. Wyatt,et al.  Staphylococcus aureus Nonribosomal Peptide Secondary Metabolites Regulate Virulence , 2010, Science.

[217]  M. Bibb,et al.  Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides , 2010, Proceedings of the National Academy of Sciences.

[218]  M. Komatsu,et al.  Terpene synthases are widely distributed in bacteria , 2014, Proceedings of the National Academy of Sciences.

[219]  Vladimir Larionov,et al.  Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae , 2008, Nature Protocols.

[220]  Jacques Ravel,et al.  Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. , 2009, Methods in enzymology.

[221]  The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles , 2015, BMC Genomics.

[222]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[223]  Andrej Sali,et al.  A Systematic Computational Analysis of Biosynthetic Gene Cluster Evolution: Lessons for Engineering Biosynthesis , 2014, PLoS Comput. Biol..

[224]  W. A. van der Donk,et al.  Mechanistic Studies of Ser/Thr Dehydration Catalyzed by a Member of the LanL Lanthionine Synthetase Family , 2011, Biochemistry.

[225]  Chad W. Johnston,et al.  Automated Identification of Depsipeptide Natural Products by an Informatic Search Algorithm , 2015, Chembiochem : a European journal of chemical biology.

[226]  B. Neilan,et al.  Evolutionary Affiliations Within the Superfamily of Ketosynthases Reflect Complex Pathway Associations , 2003, Journal of Molecular Evolution.