Why sex and recombination?
暂无分享,去创建一个
Sex and recombination have long been seen as adaptations that facilitate natural selection by generating favorable variations. If recombination is to aid selection, there must be negative linkage disequilibria-favorable alleles must be found together less often than expected by chance. These negative linkage disequilibria can be generated directly by selection, but this must involve negative epistasis of just the right strength, which is not expected, from either experiment or theory. Random drift provides a more general source of negative associations: Favorable mutations almost always arise on different genomes, and negative associations tend to persist, precisely because they shield variation from selection. We can understand how recombination aids adaptation by determining the maximum possible rate of adaptation. With unlinked loci, this rate increases only logarithmically with the influx of favorable mutations. With a linear genome, a scaling argument shows that in a large population, the rate of adaptive substitution depends only on the expected rate in the absence of interference, divided by the total rate of recombination. A two-locus approximation predicts an upper bound on the rate of substitution, proportional to recombination rate. If associations between linked loci do impede adaptation, there can be substantial selection for modifiers that increase recombination. Whether this can account for the maintenance of high rates of sex and recombination depends on the extent of selection. It is clear that the rate of species-wide substitutions is typically far too low to generate appreciable selection for recombination. However, local sweeps within a subdivided population may be effective.
[1] Linda Partridge. The Masterpiece of Nature: The Evolution and Genetics of Sexuality, Graham Bell. Croom Helm, London and Canberra (1982), 635, Price £25.00 , 1983 .
[2] R. A. Fisher,et al. The Genetical Theory of Natural Selection , 1931 .
[3] G. C. Williams. Sex and evolution. , 1975, Monographs in population biology.
[4] T. Morgan. Heredity and sex , 2005, Zeitschrift für induktive Abstammungs- und Vererbungslehre.