Structurally Robust, Chemically Diverse: Apatite and Apatite Supergroup Minerals

Apatite is ubiquitous in igneous, metamorphic, and sedimentary rocks and is significant to more fields of study than perhaps any other mineral. To help understand why, one needs to know apatite's structure, composition, and crystal chemistry. Apatite has a robust hexagonal atomic framework based on two distinct metal-cation sites ( M 1, M 2), a tetrahedral-cation site ( T ), and an anion column along four edges of the unit cell. These cation and anion sites can, among them, incorporate more than half of the long-lived elements in the periodic table, giving rise to the “apatite supergroup,” which contains over 40 mineral species. The structure and composition impart properties that can be technologically, medically, and geologically very useful.

[1]  J. Webster,et al.  Magmatic Apatite: A Powerful, Yet Deceptive, Mineral , 2015 .

[2]  F. McCubbin,et al.  Extraterrestrial apatite: Planetary geochemistry to astrobiology , 2015 .

[3]  D. Harlov Apatite: A Fingerprint for Metasomatic Processes , 2015 .

[4]  J. Hughes Presidential Address. The many facets of apatite , 2015 .

[5]  M. Fleet Carbonated Hydroxyapatite: Materials, Synthesis, and Applications , 2014 .

[6]  D. Harlov,et al.  Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes , 2013 .

[7]  T. White,et al.  Nomenclature of the apatite supergroup minerals , 2010 .

[8]  John M. Hughes,et al.  Site preference of U and Th in Cl, F, and Sr apatites , 2009 .

[9]  G. Filippelli The Global Phosphorus Cycle: Past, Present, and Future , 2008 .

[10]  P. King,et al.  Accommodation of the carbonate ion in apatite: An FTIR and X-ray structure study of crystals synthesized at 2–4 GPa , 2004 .

[11]  F. Spear,et al.  Apatite, Monazite, and Xenotime in Metamorphic Rocks , 2002 .

[12]  P. Candela,et al.  Apatite in Igneous Systems , 2002 .

[13]  M. Fleet,et al.  Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors , 2002 .

[14]  J. Rakovan Growth and Surface Properties of Apatite , 2002 .

[15]  G. Filippelli The Global Phosphorus Cycle , 2002 .

[16]  John M. Hughes,et al.  STRONTIUM IN THE APATITE STRUCTURE: STRONTIAN FLUORAPATITE AND BELOVITE-(Ce) , 2000 .

[17]  J. Elliott,et al.  Structure and chemistry of the apatites and other calcium orthophosphates , 1994 .

[18]  John M. Hughes,et al.  The crystal structure of monoclinic britholite-(Ce) and britholite-(Y) , 1993 .

[19]  John M. Hughes,et al.  ORDERING OF DIVALENT CATIONS IN THE APATITE STRUCTURE : CRYSTAL STRUCTURE REFINEMENTS OF NATURAL MN- AND SR-BEARING APATITE , 1991 .

[20]  John M. Hughes,et al.  Rare-earth-element ordering and structural variations in natural rare-earth-bearing apatites , 1991 .

[21]  John M. Hughes,et al.  The crystal of mimetite and clinomimetite, Pb 5 (AsO 4 ) 3 Cl , 1991 .

[22]  John M. Hughes,et al.  Crystal structures of natural ternary apatites; solid solution in the Ca 5 (PO 4 ) 3 X(X = F, OH, Cl) system , 1990 .

[23]  K. Crowley,et al.  Structural variations in natural F, OH, and Cl apatites , 1989 .

[24]  A. Hounslow,et al.  Monoclinic chlorapatite from Ontario , 1970 .