Video observations of tiny near-Earth objects with Tomo-e Gozen

We report the results of video observations of tiny (diameter less than 100 m) near-Earth objects (NEOs) with Tomo-e Gozen on the Kiso 105 cm Schmidt telescope. The rotational period of a tiny asteroid reflects its dynamical history and physical properties since smaller objects are sensitive to the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect. We carried out video observations of 60 tiny NEOs at 2 fps from 2018 to 2021 and successfully derived the rotational periods and axial ratios of 32 NEOs including 13 fast rotators with rotational periods less than 60 s. The fastest rotator found during our survey is 2020 HS$_\mathsf {7}$ with a rotational period of 2.99 s. We statistically confirmed that there is a certain number of tiny fast rotators in the NEO population, which have been missed with all previous surveys. We have discovered that the distribution of the tiny NEOs in a diameter and rotational period (D–P) diagram is truncated around a period of 10 s. The truncation with a flat-top shape is not explained well by either a realistic tensile strength of NEOs or the suppression of YORP by meteoroid impacts. We propose that the dependence of the tangential YORP effect on the rotational period potentially explains the observed pattern in the D–P diagram.

[1]  D. Kim,et al.  Rotation acceleration of asteroids (10115) 1992 SK, (1685) Toro, and (1620) Geographos due to the YORP effect , 2021, Astronomy & Astrophysics.

[2]  N. Moskovitz,et al.   Photometry and model of near-Earth asteroid 2021 DW1 from one apparition , 2021, Astronomy & Astrophysics.

[3]  D. Scheeres,et al.  Limiting Behavior of Asteroid Obliquity and Spin Using a Semi-analytic Thermal Model of the YORP Effect , 2021, 2104.11840.

[4]  R. Weryk,et al.  Low thermal conductivity of the superfast rotator (499998) 2011 PT , 2021, Astronomy & Astrophysics.

[5]  Hirotaka Sawada,et al.  Boulder size and shape distributions on asteroid Ryugu , 2019, Icarus.

[6]  K. Muinonen,et al.  Phase integral of asteroids , 2019, Astronomy & Astrophysics.

[7]  D R Golish,et al.  The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations , 2019, Nature Communications.

[8]  Brett M. Morris,et al.  astroquery: An Astronomical Web-querying Package in Python , 2019, The Astronomical Journal.

[9]  et al,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[10]  Richard P. Binzel,et al.  The Mission Accessible Near-Earth Objects Survey: Four Years of Photometry , 2018, The Astrophysical Journal Supplement Series.

[11]  E. Beshore,et al.  Debiased orbit and absolute-magnitude distributions for near-Earth objects , 2018, Icarus.

[12]  B. Stalder,et al.  ATLAS: A High-cadence All-sky Survey System , 2018, 1802.00879.

[13]  J. Vanderplas Understanding the Lomb–Scargle Periodogram , 2017, 1703.09824.

[14]  P. Wiegert,et al.  On the rotation rates and axis ratios of the smallest known near-Earth asteroids—The archetypes of the Asteroid Redirect Mission targets , 2015, 1503.07454.

[15]  P. Wiegert Meteoroid impacts onto asteroids: A competitor for Yarkovsky and YORP , 2014, 1407.3714.

[16]  E. Christensen,et al.  THE MISSION ACCESSIBLE NEAR-EARTH OBJECTS SURVEY (MANOS): FIRST PHOTOMETRIC RESULTS , 2013, 1607.03517.

[17]  Benoit Carry,et al.  Density of asteroids , 2012, 1203.4336.

[18]  D. Vokrouhlický,et al.  Yarkovsky–O’Keefe–Radzievskii–Paddack effect on tumbling objects , 2011 .

[19]  A. Nakamura,et al.  The shape distribution of boulders on Asteroid 25143 Itokawa: Comparison with fragments from impact experiments , 2010 .

[20]  D. O’Donoghue,et al.  Photometric survey of the very small near-Earth asteroids with the SALT telescope , III. Lightcurves and periods for 12 objects and negative detections , 2010 .

[21]  Petr Pravec,et al.  The asteroid lightcurve database , 2009 .

[22]  K. Ohtsuki,et al.  Spin rates of fast-rotating asteroids and fragments in impact disruption , 2009 .

[23]  T. Statler,et al.  Extreme sensitivity of the YORP effect to small-scale topography , 2009, 0903.1119.

[24]  D. Vokrouhlický,et al.  Generalized YORP evolution: Onset of tumbling and new asymptotic states , 2007 .

[25]  Petr Pravec,et al.  Binary asteroid population 1. Angular momentum content , 2007 .

[26]  K. Holsapple Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61 , 2007 .

[27]  William F. Bottke,et al.  THE YARKOVSKY AND YORP EFFECTS: Implications for Asteroid Dynamics , 2006 .

[28]  D. Vokrouhlický,et al.  The YORP effect with finite thermal conductivity , 2004 .

[29]  D. Vokrouhlický,et al.  Detectability of YORP rotational slowing of asteroid 25143 Itokawa , 2004 .

[30]  David Vokrouhlický,et al.  YORP-induced long-term evolution of the spin state of small asteroids and meteoroids , 2002 .

[31]  D. Rubincam,et al.  Radiative Spin-up and Spin-down of Small Asteroids , 2000 .

[32]  Petr Pravec,et al.  Fast and Slow Rotation of Asteroids , 2000 .

[33]  Andrea Milani,et al.  Yarkovsky Effect on Small Near-Earth Asteroids: Mathematical Formulation and Examples , 2000 .

[34]  Veverka,et al.  Radio science results during the NEAR-shoemaker spacecraft rendezvous with eros , 2000, Science.

[35]  Jedicke,et al.  Understanding the distribution of near-earth asteroids , 1999, Science.

[36]  W. Hartmann,et al.  Meteorite Delivery via Yarkovsky Orbital Drift , 1998 .

[37]  Harold F. Levison,et al.  Dynamical Lifetimes of Objects Injected into Asteroid Belt Resonances , 1997 .

[38]  Alan W. Iarris Tumbling Asteroids , 1997 .

[39]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[40]  K. Holsapple THE SCALING OF IMPACT PROCESSES IN PLANETARY SCIENCES , 1993 .

[41]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .