Snapshot spectral imaging with parallel metasystems

An array of cascaded metasurfaces implements a compact and lightweight spectral imager that acquires real-time videos. Spectral imagers divide scenes into quantitative and narrowband spectral channels. They have become important metrological tools in many areas of science, especially remote sensing. Here, we propose and experimentally demonstrate a snapshot spectral imager using a parallel optical processing paradigm based on arrays of metasystems. Our multi-aperture spectral imager weighs less than 20 mg and simultaneously acquires 20 image channels across the 795- to 980-nm spectral region. Each channel is formed by a metasurface-tuned filter and a metalens doublet. The doublets incorporate absorptive field stops, reducing cross-talk between image channels. We demonstrate our instrument’s capabilities with both still images and video. Narrowband filtering, necessary for the device’s operation, also mitigates chromatic aberration, a common problem in metasurface imagers. Similar instruments operating at visible wavelengths hold promise as compact, aberration-free color cameras. Parallel optical processing using metasystem arrays enables novel, compact instruments for scientific studies and consumer electronics.

[1]  J. Valentine,et al.  Multifunctional metaoptics based on bilayer metasurfaces , 2019, Light: Science & Applications.

[2]  Andrei Faraon,et al.  Hyperspectral Imager with Folded Metasurface Optics , 2019, ACS Photonics.

[3]  Seyedeh Mahsa Kamali,et al.  Compact folded metasurface spectrometer , 2018, Nature Communications.

[4]  Seyedeh Mahsa Kamali,et al.  Angle-multiplexed metasurfaces , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[5]  Sensong An,et al.  Multiwavelength Metasurfaces Based on Single‐Layer Dual‐Wavelength Meta‐Atoms: Toward Complete Phase and Amplitude Modulations at Two Wavelengths , 2017 .

[6]  Wei Ting Chen,et al.  Achromatic metalens over 60 nm bandwidth in the visible , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[7]  Seyedeh Mahsa Kamali,et al.  Controlling the sign of chromatic dispersion in diffractive optics , 2017, 1701.07178.

[8]  Tal Ellenbogen,et al.  Composite functional metasurfaces for multispectral achromatic optics , 2016, Nature Communications.

[9]  Federico Capasso,et al.  Broadband high-efficiency dielectric metasurfaces for the visible spectrum , 2016, Proceedings of the National Academy of Sciences.

[10]  Andrei Faraon,et al.  Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations , 2016, Nature Communications.

[11]  Andrei Faraon,et al.  Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures. , 2016, Optics express.

[12]  Seyedeh Mahsa Kamali,et al.  Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules , 2016, 1601.05847.

[13]  Andrei Faraon,et al.  Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. , 2015, Optics express.

[14]  A. Majumdar,et al.  Low contrast dielectric metasurface optics , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[15]  Guoxing Zheng,et al.  Helicity multiplexed broadband metasurface holograms , 2015, Nature Communications.

[16]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[17]  O. Hansen,et al.  SU-8 etching in inductively coupled oxygen plasma , 2013 .

[18]  Michael W. Kudenov,et al.  Review of snapshot spectral imaging technologies , 2013, Optics and Precision Engineering.

[19]  Shanhui Fan,et al.  S4 : A free electromagnetic solver for layered periodic structures , 2012, Comput. Phys. Commun..

[20]  Julia A. Barsi,et al.  The next Landsat satellite: The Landsat Data Continuity Mission , 2012 .

[21]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[22]  David J. Brady,et al.  Multiscale gigapixel photography , 2012, Nature.

[23]  Brian L. Markham,et al.  Landsat Data Continuity Mission , 2011 .

[24]  Michael W Kudenov,et al.  White-light Sagnac interferometer for snapshot multispectral imaging. , 2010, Applied optics.

[25]  Ashwin A. Wagadarikar,et al.  Single disperser design for coded aperture snapshot spectral imaging. , 2008, Applied optics.

[26]  Martin Stutzmann,et al.  Black nonreflecting silicon surfaces for solar cells , 2006 .

[27]  Jun Tanida,et al.  Multispectral imaging using compact compound optics. , 2004, Optics express.

[28]  P Mouroulis,et al.  Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information. , 2000, Applied optics.

[29]  Zeev Zalevsky,et al.  Space–bandwidth product of optical signals and systems , 1996 .

[30]  M. Descour,et al.  Computed-tomography imaging spectrometer: experimental calibration and reconstruction results. , 1995, Applied optics.

[31]  L. Kou,et al.  Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range. , 1993, Applied optics.

[32]  A. Robertson The CIE 1976 Color-Difference Formulae , 1977 .

[33]  A. B. Vander Lugt,et al.  Signal detection by complex spatial filtering , 1964, IEEE Trans. Inf. Theory.

[34]  W. L. Wilcock,et al.  Properties of All-Dielectric Interference Filters. II. Filters in Parallel Beams of Light Incident Obliquely and in Convergent Beams , 1959 .

[35]  I. S. Bowen,et al.  The image-slicer, a device for reducing loss of light at slit of stellar spectrograph (Astrophysical Journal 1938) , 1938 .

[36]  J. MUYBRIDGE,et al.  The Horse in Motion , 1882, Nature.

[37]  F. Rowbotham Dispersal of Freshwater Bivalves , 1882, Nature.

[38]  J.,et al.  Parallel cameras , 2018 .

[39]  Huan Jiang,et al.  Full-color hologram using spatial multiplexing of dielectric metasurface. , 2016, Optics letters.

[40]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .