Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band

Daytime measurements of reflected sunlight in the visible spectrum have been a staple of Earth-viewing radiometers since the advent of the environmental satellite platform. At night, these same optical-spectrum sensors have traditionally been limited to thermal infrared emission, which contains relatively poor information content for many important weather and climate parameters. These deficiencies have limited our ability to characterize the full diurnal behavior and processes of parameters relevant to improved monitoring, understanding and modeling of weather and climate processes. Visible-spectrum light information does exist during the nighttime hours, originating from a wide variety of sources, but its detection requires specialized technology. Such measurements have existed, in a limited way, on USA Department of Defense satellites, but the Suomi National Polar-orbiting Partnership (NPP) satellite, which carries a new Day/Night Band (DNB) radiometer, offers the first quantitative measurements of nocturnal visible and near-infrared light. Here, we demonstrate the expanded potential for nocturnal low-light visible applications enabled by the DNB. Via a combination of terrestrial and extraterrestrial light sources, such observations are always available—expanding many current existing applications while enabling entirely new capabilities. These novel low-light measurements open doors to a wealth of new interdisciplinary research topics while lighting a pathway toward the optimized design of follow-on satellite based low light visible sensors.

[1]  Yu Lu,et al.  Snow Cover Monitoring Using MODIS Data in Liaoning Province, Northeastern China , 2010, Remote. Sens..

[2]  A. Henderson-Sellers,et al.  1979 3D-Nephanalysis Global Total Cloud Amount Climatology , 1985 .

[3]  Michael C. Kelley,et al.  Imaging and modeling the ionospheric airglow response over Hawaii to the tsunami generated by the Tohoku earthquake of 11 March 2011 , 2011 .

[4]  Qian Zhang,et al.  Can Night-Time Light Data Identify Typologies of Urbanization? A Global Assessment of Successes and Failures , 2013, Remote. Sens..

[5]  Alexander Belousov,et al.  Another “Great Tolbachik” Eruption? , 2013 .

[6]  J. Holton The Influence of Gravity Wave Breaking on the General Circulation of the Middle Atmosphere , 1983 .

[7]  T. Casadevall,et al.  The 1989–1990 eruption of Redoubt Volcano, Alaska: impacts on aircraft operations , 1994 .

[8]  Sheldon Drobot,et al.  Climate Data Records from environmental satellites , 2004 .

[9]  William G. Pichel,et al.  Comparative performance of AVHRR‐based multichannel sea surface temperatures , 1985 .

[10]  C. Elvidge,et al.  Why VIIRS data are superior to DMSP for mapping nighttime lights , 2013 .

[11]  Steven D. Miller,et al.  Automated Lightning Flash Detection in Nighttime Visible Satellite Data , 2011 .

[12]  J. Huba,et al.  Simulation of the seeding of equatorial spread F by circular gravity waves , 2013 .

[13]  Claudia Notarnicola,et al.  Maps from MODIS Images at 250 m Resolution , Part 2 : Validation , 2013 .

[14]  Frank Müller,et al.  Numerical simulation of the diurnal cycle of marine stratocumulus during FIRE—An LES and SCM modelling study , 2004 .

[15]  F. Javier Martín-Torres,et al.  Implication of Impacts in the Young Earth Sun Paradox and the Evolution of Earth’s Atmosphere , 2013 .

[16]  Charles R. Sampson,et al.  Real-Time Internet Distribution of Satellite Products for Tropical Cyclone Reconnaissance. , 2001 .

[17]  Alain Royer,et al.  A Merging Algorithm for Regional Snow Mapping over Eastern Canada from AVHRR and SSM/I Data , 2013, Remote. Sens..

[18]  T. Jackson,et al.  III. Measuring surface soil moisture using passive microwave remote sensing , 1993 .

[19]  D. Lilly,et al.  On entrainment rates in nocturnal marine stratocumulus , 2003 .

[20]  R. Fett,et al.  Satellite observation of internal wave refraction in the South China Sea , 1977 .

[21]  Ryuzo Yokoyama,et al.  Sea surface effects on the sea surface temperature estimation by remote sensing , 1995 .

[22]  Yongxiang Hu,et al.  An Accurate Parameterization of the Radiative Properties of Water Clouds Suitable for Use in Climate Models , 1993 .

[23]  Sunny Sun-Mack,et al.  CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data—Part I: Algorithms , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Richard J. Blakeslee,et al.  Utilizing Total Lightning Information to Diagnose Convective Trends , 2010 .

[25]  Bruce I. Hauss,et al.  Suomi NPP VIIRS day‐night band on‐orbit performance , 2013 .

[26]  J. Holton,et al.  The Gravity Wave Response above Deep Convection in a Squall Line Simulation. , 1995 .

[27]  Heinz W. Kasemir Lightning Hazards to Rockets during Launch II , 2013 .

[28]  P. J. Werdell,et al.  A multi-sensor approach for the on-orbit validation of ocean color satellite data products , 2006 .

[29]  Conrad Bielski,et al.  Post-Disaster Image Processing for Damage Analysis Using GENESI-DR, WPS and Grid Computing , 2011, Remote. Sens..

[30]  H. Kieffer,et al.  The Spectral Irradiance of the Moon , 2005 .

[31]  M F Ingham,et al.  The light of the night sky and the interplanetary medium , 1971 .

[32]  Andi Walther,et al.  Implementation of the Daytime Cloud Optical and Microphysical Properties Algorithm (DCOMP) in PATMOS-x , 2012 .

[33]  Jian Zhang,et al.  Evaluation and Uncertainty Estimation of NOAA/NSSL Next-Generation National Mosaic Quantitative Precipitation Estimation Product (Q2) over the Continental United States , 2013 .

[34]  Scott Gleason,et al.  Towards Sea Ice Remote Sensing with Space Detected GPS Signals: Demonstration of Technical Feasibility and Initial Consistency Check Using Low Resolution Sea Ice Information , 2010, Remote. Sens..

[35]  Ming-Xia He,et al.  Comparison of Typhoon Locations over Ocean Surface Observed by Various Satellite Sensors , 2013, Remote. Sens..

[36]  Christine Chen,et al.  Validation of NOAA-Interactive Multisensor Snow and Ice Mapping System (IMS) by Comparison with Ground-Based Measurements over Continental United States , 2012, Remote. Sens..

[37]  Christopher D. Elvidge,et al.  Quantifying light-fishing for Dosidicus gigas in the eastern Pacific using satellite remote sensing , 2004 .

[38]  Alfredo Prata,et al.  Volcanic Ash Hazards to Aviation , 2015 .

[39]  Katherine L. Farnsworth,et al.  River Discharge to the Coastal Ocean: Runoff, erosion, and delivery to the coastal ocean , 2011 .

[40]  J. Coakley,et al.  Effect of Ship-Stack Effluents on Cloud Reflectivity , 1987, Science.

[41]  Thomas M. Hamill,et al.  A Description of the Air Force Real-Time Nephanalysis Model , 1992 .

[42]  James W. Hurrell,et al.  Global Sea Surface Temperature Analyses: Multiple Problems and Their Implications for Climate Analysis, Modeling, and Reanalysis , 1999 .

[43]  E. Cliver The 1859 Space Weather Event: Then and Now , 2006 .

[44]  William B. Rossow,et al.  ISCCP cloud properties associated with standard cloud types identified in individual surface observations , 2001 .

[45]  W. Rossow,et al.  The International Satellite Cloud Climatology Project (ISCCP): The First Project of the World Climate Research Programme , 1983 .

[46]  C. Elvidge,et al.  Mapping City Lights With Nighttime Data from the DMSP Operational Linescan System , 1997 .

[47]  Steven D. Miller,et al.  A Dynamic Lunar Spectral Irradiance Data Set for NPOESS/VIIRS Day/Night Band Nighttime Environmental Applications , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Boulder,et al.  The first World Atlas of the artificial night sky brightness , 2001, astro-ph/0108052.

[49]  Randall Rose,et al.  The CYGNSS nanosatellite constellation hurricane mission , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[50]  Jia Yue,et al.  A model study of the effects of winds on concentric rings of gravity waves from a convective plume near Fort Collins on 11 May 2004 , 2009 .

[51]  C. Schueler,et al.  VIIRS constant spatial-resolution advantages , 2013 .

[52]  Christian Jakob,et al.  Cloud Cover in the ECMWF Reanalysis , 1999 .

[53]  Liansheng Liu,et al.  Studies on the sea surface microlayer. II. The layer of sudden change of physical and chemical properties. , 2003, Journal of colloid and interface science.

[54]  T. Phulpin,et al.  Atmospheric correction of infrared measurements of sea surface temperature using channels at 3.7, 11 and 12 Μm , 1980 .

[55]  Philip A. Durkee,et al.  Snow/Cloud Discrimination with Multispectral Satellite Measurements , 1990 .

[56]  Stanley Q. Kidder,et al.  On the use of satellites in Molniya orbits for meteorological observation of middle and high latitudes , 1990 .

[57]  W. Munk,et al.  Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter , 1954 .

[58]  Stephen P. Mills,et al.  Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities , 2012, Proceedings of the National Academy of Sciences.

[59]  Steven D. Miller,et al.  Strategy for studying nocturnal aerosol optical depth using artificial lights , 2008 .

[60]  Steve Mills,et al.  4 CALIBRATION OF THE VIIRS DAY / NIGHT BAND ( DNB ) , 2010 .

[61]  S. Klein,et al.  The Seasonal Cycle of Low Stratiform Clouds , 1993 .

[62]  Shamil Maksyutov,et al.  Disaggregation of national fossil fuel CO2 emissions using a global power plant database and DMSP nightlight data , 2010 .

[63]  Robert Pinkel,et al.  Diurnal cycling: observations and models of the upper-ocean response to diurnal heating, cooling, and wind mixing. Technical report , 1986 .

[64]  J. L. Green,et al.  Bracing for a solar superstorm. , 2008, Scientific American.

[65]  J. Prospero Long‐term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality , 1999 .

[66]  F. S. Nakayama,et al.  The Dependence of Bare Soil Albedo on Soil Water Content. , 1975 .

[67]  D. Wark,et al.  TIROS I OBSERVATIONS OF ICE IN THE GULF OF ST. LAWRENCE , 1960 .

[68]  Christopher R. J. Kilburn,et al.  Volcanoes of the World , 1997 .

[69]  Steven D. Miller,et al.  Satellite-Based Imagery Techniques for Daytime Cloud/Snow Delineation from MODIS. , 2005 .

[70]  Michael J. Pavolonis,et al.  Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements , 2013 .

[71]  Stephen Nicholls,et al.  Observations of marine stratocumulus clouds during FIRE , 1988 .

[72]  Wei Shi,et al.  MODIS‐derived ocean color products along the China east coastal region , 2007 .

[73]  Roy Rasmussen,et al.  Process-Oriented Analysis of Environmental Conditions Associated with Precipitation Fog Events in the New York City Region , 2008 .

[74]  Christopher D. Elvidge,et al.  Area and position accuracy of DMSP nighttime lights data , 2004 .

[75]  Richard Müller,et al.  The Role of the Effective Cloud Albedo for Climate Monitoring and Analysis , 2011, Remote. Sens..

[76]  K. Cummins,et al.  Combined Satellite- and Surface-Based Estimation of the Intracloud Cloud-to-Ground Lightning Ratio over the Continental United States , 2001 .

[77]  Steven A. Ackerman,et al.  Dust and Smoke Detection for Multi-Channel Imagers , 2010, Remote. Sens..

[78]  G. Maykut Energy exchange over young sea ice in the central Arctic , 1978 .

[79]  Steven C. Reising,et al.  Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado , 2009 .

[80]  W. Rossow,et al.  ISCCP Cloud Data Products , 1991 .

[81]  Adam Carter,et al.  Long-Term Volcanic Activity at Shiveluch Volcano: Nine Years of ASTER Spaceborne Thermal Infrared Observations , 2010, Remote. Sens..

[82]  Donald W. Hillger,et al.  A case for natural colour imagery from geostationary satellites, and an approximation for the GOES-R ABI , 2012 .

[83]  P. Sargent Two case studies , 1972 .

[84]  Marko Princevac,et al.  Particle size distributions from laboratory-scale biomass fires using fast response instruments , 2010 .

[85]  L. Ostrovsky,et al.  Observations of highly nonlinear internal solitons over the continental shelf , 1998 .

[86]  Andrew Molthan,et al.  Satellite Observations Monitor Outages From Superstorm Sandy , 2013 .

[87]  Harald Norinder Duration of Lightning Strokes and Occurrence of Multiple Strokes , 1950 .

[88]  Travis Longcore,et al.  Ecological light pollution , 2004 .

[89]  Christopher R. Jackson,et al.  Internal solitary wave refraction at Dongsha Atoll, South China Sea , 2013 .

[90]  C. Schueler,et al.  The NPOESS VIIRS Day/Night Visible Sensor , 2006 .

[91]  Dorothy K. Hall,et al.  Observations of snow and ice features during the polar winter using moonlight as a source of illumination , 1991 .

[92]  T. Croft,et al.  Burning Waste Gas in Oil Fields , 1973, Nature.

[93]  Stanford B. Hooker,et al.  An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series , 2004 .

[94]  Steven D. Miller,et al.  Assessing Moonlight Availability for Nighttime Environmental Applications by Low-Light Visible Polar-Orbiting Satellite Sensors , 2012 .

[95]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[96]  B. A. Boville,et al.  A three-dimensional simulation of the equatorial quasi-biennial oscillation , 1992 .

[97]  Steven Businger,et al.  The Impact of Lightning Data Assimilation on a Winter Storm Simulation over the North Pacific Ocean , 2009 .

[98]  Menghua Wang,et al.  Estimation of ocean contribution at the MODIS near‐infrared wavelengths along the east coast of the U.S.: Two case studies , 2005 .

[99]  John M. Lewis,et al.  Suomi: Pragmatic Visionary , 2010 .

[100]  Ross S. Lunetta,et al.  MERIS Retrieval of Water Quality Components in the Turbid Albemarle-Pamlico Sound Estuary, USA , 2011, Remote. Sens..

[101]  Alexander P. Trishchenko,et al.  Three-Apogee 16-h Highly Elliptical Orbit as Optimal Choice for Continuous Meteorological Imaging of Polar Regions , 2011 .

[102]  Christopher D. Elvidge,et al.  VIIRS Nightfire: Satellite Pyrometry at Night , 2013, Remote. Sens..

[103]  Steven D. Miller,et al.  Shedding new light on nocturnal monitoring of the environment with the VIIRS day/night band , 2005, SPIE Optics + Photonics.

[104]  Steven D Miller,et al.  Detection of a bioluminescent milky sea from space. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[105]  Steven D. Miller,et al.  Preliminary investigations toward nighttime aerosol optical depth retrievals from the VIIRS Day/Night Band , 2013 .

[106]  C. Kummerow,et al.  The Tropical Rainfall Measuring Mission (TRMM) Sensor Package , 1998 .

[107]  Ramakrishna R. Nemani,et al.  The Nightsat mission concept , 2007, International Journal of Remote Sensing.

[108]  Claudia Notarnicola,et al.  Remote Sensing Snow Cover Maps from Modis Images at 250 M Resolution, Part 1: Algorithm Description , 2022 .

[109]  A. Fierro,et al.  Application of a Lightning Data Assimilation Technique in the WRF-ARW Model at Cloud-Resolving Scales for the Tornado Outbreak of 24 May 2011 , 2012 .