In-situ construction of multifunctional interlayer enabled dendrite-free garnet-based solid-state batteries

[1]  Jin Leng,et al.  A Facile and Low-Cost Wet-Chemistry Artificial Interface Engineering for Garnet-Based Solid-State Li Metal Batteries , 2022, SSRN Electronic Journal.

[2]  Xinbing Zhao,et al.  Double-layer solid-state electrolyte enables compatible interfaces for high-performance lithium metal batteries , 2022, Journal of Energy Chemistry.

[3]  Bingbing Tian,et al.  From protonation & Li-rich contamination to grain-boundary segregation: evaluations of solvent-free vs. wet routes on preparing Li7La3Zr2O12 solid electrolyte , 2022, Journal of Energy Chemistry.

[4]  E. A. Il’ina,et al.  Li-In alloy: preparation, properties, wettability of solid electrolytes based on Li7La3Zr2O12 , 2022, Journal of Materials Science.

[5]  Sewon Kim,et al.  Multifunctional Interface for High-Rate and Long-Durable Garnet-Type Solid Electrolyte in Lithium Metal Batteries , 2021, ACS Energy Letters.

[6]  Zhigao Luo,et al.  Efficient Mutual-Compensating Li-Loss Strategy toward Highly Conductive Garnet Ceramics for Li-Metal Solid-State Batteries. , 2021, ACS applied materials & interfaces.

[7]  Yunhui Huang,et al.  An Oxygen Vacancy-Rich ZnO Layer on Garnet Electrolyte Enables Dendrite-Free Solid State Lithium Metal Batteries , 2021, Chemical Engineering Journal.

[8]  Jiujun Zhang,et al.  A fast and low-cost interface modification method to achieve high-performance garnet-based solid-state lithium metal batteries , 2021, Nano Energy.

[9]  Chunhao Yuan,et al.  Unlocking the Electrochemical–Mechanical Coupling Behaviors of Dendrite Growth and Crack Propagation in All‐Solid‐State Batteries , 2021, Advanced Energy Materials.

[10]  Chen‐Zi Zhao,et al.  Critical Current Density in Solid‐State Lithium Metal Batteries: Mechanism, Influences, and Strategies , 2021, Advanced Functional Materials.

[11]  K. Tantratian,et al.  Unraveling the Li Penetration Mechanism in Polycrystalline Solid Electrolytes , 2021, Advanced Energy Materials.

[12]  R. Kanno,et al.  Li10GeP2S12‐Type Superionic Conductors: Synthesis, Structure, and Ionic Transportation , 2020, Advanced Energy Materials.

[13]  Xiaoting Lin,et al.  Dynamics of the Garnet/Li Interface for Dendrite-Free Solid-State Batteries , 2020, ACS Energy Letters.

[14]  Kuirong Deng,et al.  A High‐Performance Carbonate‐Free Lithium|Garnet Interface Enabled by a Trace Amount of Sodium , 2020, Advanced materials.

[15]  Weidong Zhou,et al.  Rational Design of Mixed Electronic‐Ionic Conducting Ti‐Doping Li7La3Zr2O12 for Lithium Dendrites Suppression , 2020, Advanced Functional Materials.

[16]  Adelaide M. Nolan,et al.  Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. , 2020, Chemical reviews.

[17]  Chen‐Zi Zhao,et al.  Controlling Dendrite Growth in Solid-State Electrolytes , 2020 .

[18]  R. Li,et al.  Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries , 2020 .

[19]  T. Zhao,et al.  Ultra-stable lithium plating/stripping in garnet-based lithium-metal batteries enabled by a SnO2 nanolayer , 2019, Journal of Power Sources.

[20]  Felix H. Richter,et al.  Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes , 2019, Joule.

[21]  Xiaoting Lin,et al.  In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries , 2019, Nano Energy.

[22]  Ru‐Shi Liu,et al.  An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12 , 2019, Journal of Materials Chemistry A.

[23]  C. Nan,et al.  Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries , 2019, Energy Storage Materials.

[24]  Xiulin Fan,et al.  High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes , 2019, Nature Energy.

[25]  Henghui Xu,et al.  Li3N-Modified Garnet Electrolyte for All-Solid-State Lithium Metal Batteries Operated at 40 °C. , 2018, Nano letters.

[26]  Z. Wen,et al.  An in situ element permeation constructed high endurance Li–LLZO interface at high current densities , 2018 .

[27]  Pengjian Zuo,et al.  Excellent room-temperature performance of lithium metal polymer battery with enhanced interfacial compatibility , 2018, Electrochimica Acta.

[28]  Yan‐Bing He,et al.  Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries , 2018, Journal of Power Sources.

[29]  Z. Bi,et al.  Cycle stability of lithium/garnet/lithium cells with different intermediate layers , 2018, Rare Metals.

[30]  Donald J. Siegel,et al.  Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review , 2018, Ionics.

[31]  Qi Li,et al.  Recent Progress of the Solid‐State Electrolytes for High‐Energy Metal‐Based Batteries , 2018 .

[32]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[33]  Q. Ma,et al.  Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. , 2016, ACS applied materials & interfaces.

[34]  Donald J. Siegel,et al.  Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO) , 2016 .

[35]  Yi Cui,et al.  Facile synthesis of Li2S–polypyrrole composite structures for high-performance Li2S cathodes , 2014 .

[36]  Gavin Conibeer,et al.  Physical properties of very thin SnS films deposited by thermal evaporation , 2011 .

[37]  C. Sanjeeviraja,et al.  Cathodic electrodeposition and analysis of SnS films for photoelectrochemical cells , 2001 .

[38]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[39]  Asma Sharafi,et al.  Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte , 2017 .