Radiation detector developments in medical applications: inorganic scintillators in positron emission tomography

In recent years, a number of new gamma-ray scintillators are commercially available. These scintillators are either derived from known scintillators, e.g. Lu1-xYxAlO3: Ce (LuYAP) from LuAlO3:Ce and Lu(2(1-x))Y2xSiO5:Ce (LYSO) from Lu2SiO5:Ce or are the result of new discoveries, e.g. LaCl3:Ce and LaBr3:Ce. The first two materials are primarily of interest because of the relatively high detection efficiency and fast response; LYSO has found application in time-of-flight (TOF) positron-emission tomography (TOF PET) and the LuYAP-LYSO combination is used in small-animal PET. The halide scintillators have an excellent energy resolution of approximately 3% at 662 keV and they have a relatively high light yield. LaBr3:Ce is being studied for application in TOF PET. At the same time, the search for and research on new scintillator materials are going on. For example, LuI3:Ce is a new material with a very high light yield (approximately 90,000 photons MeV(-1)). Other examples of new materials are (C6H13NH3)2PbI4 and (C3H7NH3)2PbBr4, organic-inorganic hybrid compounds, of which the former has a very fast sub-nanosecond response. The new scintillators show great promise for new developments in medical applications, in particular, for PET systems.

[1]  S. Surti,et al.  Characterization of a time-of-flight PET scanner based on lanthanum bromide , 2005, IEEE Nuclear Science Symposium Conference Record, 2005.

[2]  R. Nutt,et al.  A Multicrystal Two Dimensional BGO Detector System for Positron Emission Tomography , 1986, IEEE Transactions on Nuclear Science.

[3]  K. Asai,et al.  Scintillation properties of (C6H13NH3)2PbI4 : Exciton luminescence of an organic/inorganic multiple quantum well structure compound induced by 2.0 MeV protons , 2002 .

[4]  B. Chai,et al.  Scintillation properties of LYSO crystals , 2002, 2002 IEEE Nuclear Science Symposium Conference Record.

[5]  Charles L. Melcher,et al.  Scintillation properties of LSO:Ce boules , 1998 .

[6]  Takehiro Tomitani Image Reconstruction and Noise Evaluation in Photon Time-of-Flight Assisted Positron Emission Tomography , 1981 .

[7]  C. Eijk INORGANIC SCINTILLATORS IN POSITRON EMISSION TOMOGRAPHY , 2006 .

[8]  P. Dorenbos,et al.  High-energy-resolution scintillator: Ce3+ activated LaBr3 , 2000 .

[9]  M. Defrise,et al.  Three dimensional reconstruction of PET data from a multi-ring camera , 1989 .

[10]  Carole Lartizien,et al.  The ClearPET™ project: development of a 2nd generation high-performance small animal PET scanner , 2005 .

[11]  R.A. Thompson,et al.  A novel PET detector block with three-dimensional hit position encoding , 2004, IEEE Transactions on Nuclear Science.

[12]  T G Turkington,et al.  Performance characteristics of a whole-body PET scanner. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[13]  J. M. Ollinger,et al.  Positron Emission Tomography , 2018, Handbook of Small Animal Imaging.

[14]  C. Morel,et al.  Use of a neural network to exploit light division in a triangular scintillating crystal , 1996 .

[15]  K. Blažek,et al.  Spectroscopy and transfer processes in LuxGd1−xAlO3: Ce scintillators , 1997 .

[16]  M. Moszynski,et al.  Scintillation properties and mechanism in Lu0.8Y0.2AlO3:Ce , 2002 .

[17]  Keisuke Asai,et al.  Development of Ultra-Fast Semiconducting Scintillators Using Quantum Confinement Effect , 2004 .

[18]  G Muehllehner,et al.  Image quality assessment of LaBr3-based whole-body 3D PET scanners: a Monte Carlo evaluation , 2004 .

[19]  P. Lecoq NEW TRENDS IN PET DETECTOR DEVELOPMENTS , 2006 .

[20]  J. Glodo,et al.  LuI/sub 3/:Ce-a new scintillator for gamma ray spectroscopy , 2004, IEEE Transactions on Nuclear Science.

[21]  G. Muehllehner,et al.  Investigation of lanthanum scintillators for 3-D PET , 2002 .

[22]  M. Balcerzyk,et al.  LuAlO/sub 3/:Ce and other aluminate scintillators , 1995 .

[23]  Joel S. Karp,et al.  Depth-of-interaction determination in NaI(Tl) and BGO scintillation crystals using a temperature gradient , 1987 .

[24]  S R Cherry,et al.  3D PET using a conventional multislice tomograph without septa. , 1991, Journal of computer assisted tomography.

[25]  R. Nutt,et al.  Investigation of depth-of-interaction by pulse shape discrimination in multicrystal detectors read out by avalanche photodiodes , 1998 .

[26]  C. Eijk Inorganic-scintillator development , 2001 .

[27]  T. Budinger Time-of-flight positron emission tomography: status relative to conventional PET. , 1983, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[28]  Piotr Szupryczynski,et al.  Study of spatial resolution and depth of interaction of APD-based PET detector modules using light sharing schemes , 2003 .

[29]  Wilfried Blanc,et al.  Optical and scintillation properties of large crystals , 1998 .

[30]  K Wienhard,et al.  The ECAT EXACT HR: Performance of a New High Resolution Positron Scanner , 1994, Journal of computer assisted tomography.

[31]  W. Moses,et al.  LuAlO/sub 3/:Ce-a high density, high speed scintillator for gamma detection , 1995 .

[32]  Pieter Dorenbos,et al.  Energy Loss in Inorganic Scintillators , 1995 .

[33]  C. Melcher,et al.  Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator , 1991, Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference.

[34]  M. D. Birowosuto,et al.  Scintillation properties of LuI/sub 3/:Ce/sup 3+/-high light yield scintillators , 2005, IEEE Transactions on Nuclear Science.

[35]  S. Tavernier,et al.  Neural network-based position estimators for PET detectors using monolithic LSO blocks , 2004, IEEE Transactions on Nuclear Science.

[36]  G. Mageras,et al.  A measurement of the light yield of common inorganic scintillators , 1988 .

[37]  Michael V. Green,et al.  Depth identification accuracy of a three layer phoswich PET detector module , 1999 .

[38]  Charles L. Melcher,et al.  Current and Future Use of LSO:Ce Scintillators in PET , 2006 .

[39]  Kanai S. Shah,et al.  Potential for RbGd2Br7:Ce, LaBr3:Ce, LaBr3:Ce, and LuI3:Ce in nuclear medical imaging , 2005 .

[40]  W. Moses Time of flight in PET revisited , 2003 .

[41]  C. Eijk,et al.  Inorganic scintillators in medical imaging. , 2002 .

[42]  M. J. Weber,et al.  Luminescence of Bi4 Ge3 O12 : Spectral and decay properties , 1973 .