An Upwind Finite Pointset Method (FPM) for Compressible Euler and Navier-Stokes Equations

A Lagrangian scheme for compressible fluid flows is presented. The method can be viewed as a generalized finite difference upwind scheme. The scheme is based on the classical Euler equations in fluid mechanics, which concerns mainly non viscous problems. However, it can easily be extended to viscous problems as well. For the approximation of the spatial derivatives in the Euler equations, a modified moving least squares (MLS) method is used.