Minimum spanning acycle and lifetime of persistent homology in the Linial–Meshulam process

This paper studies a higher dimensional generalization of Frieze's $\zeta(3)$-limit theorem in the Erd\"os-R\'enyi graph process. Frieze's theorem states that the expected weight of the minimum spanning tree converges to $\zeta(3)$ as the number of vertices goes to infinity. In this paper, we study the $d$-Linial-Meshulam process as a model for random simplicial complexes, where $d=1$ corresponds to the Erd\"os-R\'enyi graph process. First, we define spanning acycles as a higher dimensional analogue of spanning trees, and connect its minimum weight to persistent homology. Then, our main result shows that the expected weight of the minimum spanning acycle behaves in $O(n^{d-1})$.

[1]  D C LittleJohn A Proof for the Queuing Formula , 1961 .

[2]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[3]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[4]  Ilan Newman,et al.  Extremal problems on shadows and hypercuts in simplicial complexes , 2014 .

[5]  Alan M. Frieze,et al.  On the Length of a Random Minimum Spanning Tree , 2012, Combinatorics, Probability and Computing.

[6]  Matthew Kahle,et al.  The Threshold for Integer Homology in Random d-Complexes , 2013, Discret. Comput. Geom..

[7]  Gil Kalai,et al.  Enumeration ofQ-acyclic simplicial complexes , 1983 .

[8]  R. Meshulam,et al.  Homological connectivity of random k-dimensional complexes , 2009, Random Struct. Algorithms.

[9]  N. Wallach,et al.  Homological connectivity of random k-dimensional complexes , 2009 .

[10]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[11]  Paul Erdös,et al.  On random graphs, I , 1959 .

[12]  Matthew Kahle,et al.  Topology of random clique complexes , 2006, Discret. Math..

[13]  Art M. Duval,et al.  Simplicial matrix-tree theorems , 2008, 0802.2576.

[14]  J. Little A Proof for the Queuing Formula: L = λW , 1961 .

[15]  Nathan Linial,et al.  On the phase transition in random simplicial complexes , 2014, 1410.1281.

[16]  David Bruce Wilson,et al.  Generating random spanning trees more quickly than the cover time , 1996, STOC '96.

[17]  Nathan Linial,et al.  Homological Connectivity Of Random 2-Complexes , 2006, Comb..

[18]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[19]  Matthew Kahle,et al.  Spectral Gaps of Random Graphs and Applications , 2012, International Mathematics Research Notices.

[20]  Matthew Kahle Topology of random simplicial complexes: a survey , 2013, 1301.7165.

[21]  Alan M. Frieze,et al.  On the value of a random minimum spanning tree problem , 1985, Discret. Appl. Math..

[22]  Y. Hiraoka,et al.  Limit theorems for persistence diagrams , 2016, The Annals of Applied Probability.

[23]  R. Forman Morse Theory for Cell Complexes , 1998 .

[24]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[25]  Russell Lyons,et al.  Random Complexes and l^2-Betti Numbers , 2008, 0811.2933.

[26]  Svante Janson,et al.  The Minimal Spanning Tree in a Complete Graph and a Functional Limit Theorem for Trees in a Random Graph , 1995, Random Struct. Algorithms.