Autonomic Closure for Turbulent Flows Using Approximate Bayesian Computation

[1]  Peter E. Hamlington,et al.  Parameter Estimation for a Turbulent Buoyant Jet with Rotating Cylinder Using Approximate Bayesian Computation , 2017 .

[2]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[3]  Gianluca Iaccarino,et al.  A Surrogate Accelerated Bayesian Inverse Analysis of the HyShot II Flight Data , 2011 .

[4]  F. Sarghini,et al.  Neural networks based subgrid scale modeling in large eddy simulations , 2003 .

[5]  Peter E. Hamlington,et al.  Parameter Estimation for a Turbulent Buoyant Jet using Approximate Bayesian Computation , 2017 .

[6]  Sebastian Mosbach,et al.  Iterative improvement of Bayesian parameter estimates for an engine model by means of experimental design , 2012 .

[7]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[8]  Yong Huang,et al.  Lean blowout limits of a gas turbine combustor operated with aviation fuel and methane , 2016 .

[9]  Hans Petter Langtangen,et al.  High performance Python for direct numerical simulations of turbulent flows , 2016, Comput. Phys. Commun..

[10]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[11]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[12]  J. Ferziger,et al.  Improved subgrid-scale models for large-eddy simulation , 1980 .

[13]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[14]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .

[15]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[16]  Speziale Comments on the "material frame-indifference" controversy. , 1987, Physical review. A, General physics.

[17]  Simone Hochgreb,et al.  Flame imaging of gas-turbine relight , 2010 .

[18]  J. Vrugt,et al.  Toward diagnostic model calibration and evaluation: Approximate Bayesian computation , 2013 .

[19]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Rob Deardon,et al.  Using Individual-Level Models for Infectious Disease Spread to Model Spatio-Temporal Combustion Dynamics , 2012 .

[21]  C. Meneveau,et al.  Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .

[22]  Jukka Corander,et al.  Approximate Bayesian Computation , 2013, PLoS Comput. Biol..

[23]  Donald D. Lucas,et al.  Impact of meteorological inflow uncertainty on tracer transport and source estimation in urban atmospheres , 2016 .

[24]  S. Pope A more general effective-viscosity hypothesis , 1975, Journal of Fluid Mechanics.

[25]  J. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.

[26]  Mark Kirkpatrick,et al.  What Animal Breeding Has Taught Us about Evolution , 2010 .

[27]  Karthik Duraisamy,et al.  A paradigm for data-driven predictive modeling using field inversion and machine learning , 2016, J. Comput. Phys..

[28]  Yi Li,et al.  A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence , 2008, 0804.1703.

[29]  Ryan N King,et al.  Autonomic closure for turbulence simulations. , 2016, Physical review. E.

[30]  L. Excoffier,et al.  Statistical evaluation of alternative models of human evolution , 2007, Proceedings of the National Academy of Sciences.

[31]  J. Templeton Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty , 2015 .