StructOpt: A modular materials structure optimization suite incorporating experimental data and simulated energies

Abstract StructOpt, an open-source structure optimization suite, applies genetic algorithm and particle swarm methods to obtain atomic structures that minimize an objective function. The objective function typically consists of the energy and the error between simulated and experimental data, which is typically applied to determine structures that minimize energy to the extent possible while also being fully consistent with available experimental data. We present example use cases including the structure of a metastable Pt nanoparticle determined from energetic and scanning transmission electron microscopy data, and the structure of an amorphous-nanocrystal composite determined from energetic and fluctuation electron microscopy data. StructOpt is modular in its construction and therefore is naturally extensible to include new materials simulation modules or new optimization methods, either written by the user or existing in other code packages. It uses the Message Passing Interface’s (MPI) dynamic process management functionality to allocate resources to computationally expensive codes on the fly, enabling StructOpt to take full advantage of the parallelization tools available in many scientific packages.

[1]  Shane Legg,et al.  Tournament versus fitness uniform selection , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[2]  K. Ho,et al.  Finding the low-energy structures of Si[001] symmetric tilted grain boundaries with a genetic algorithm , 2009 .

[3]  Daniel S. Katz,et al.  Pegasus: A framework for mapping complex scientific workflows onto distributed systems , 2005, Sci. Program..

[4]  P. Voyles,et al.  Reverse Monte Carlo structural model for a zirconium-based metallic glass incorporating fluctuation microscopy medium-range order data , 2009 .

[5]  Roy L. Johnston,et al.  Theoretical study of Cu–Au nanoalloy clusters using a genetic algorithm , 2002 .

[6]  Bryce Meredig,et al.  A hybrid computational-experimental approach for automated crystal structure solution. , 2013, Nature materials.

[7]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[8]  C Z Wang,et al.  An adaptive genetic algorithm for crystal structure prediction , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Lisandro Dalcin,et al.  Parallel distributed computing using Python , 2011 .

[10]  Paul M. Voyles,et al.  FEMSIM + HRMC: Simulation of and structural refinement using fluctuation electron microscopy for amorphous materials , 2017, Comput. Phys. Commun..

[11]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[12]  David C. Lonie,et al.  XtalOpt: An open-source evolutionary algorithm for crystal structure prediction , 2011, Comput. Phys. Commun..

[13]  Michael M. McKerns,et al.  Building a Framework for Predictive Science , 2012, SciPy.

[14]  Shujiang Yang,et al.  Genetic algorithm optimization of defect clusters in crystalline materials , 2015 .

[15]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[16]  Xueguang Shao,et al.  Global optimization of (C60)N molecular clusters , 2002 .

[17]  George Opletal,et al.  HRMC_2.1: Hybrid Reverse Monte Carlo method with silicon, carbon, germanium and silicon carbide potentials , 2014, Comput. Phys. Commun..

[18]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[19]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[20]  Dane Morgan,et al.  Integrated Computational and Experimental Structure Refinement for Nanoparticles. , 2016, ACS nano.

[21]  C. Pickard,et al.  Core-level spectroscopy calculation and the plane wave pseudopotential method , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  D. Hamann,et al.  Theory and Application for the Scanning Tunneling Microscope , 1983 .

[23]  Douglas Thain,et al.  Distributed computing in practice: the Condor experience , 2005, Concurr. Pract. Exp..

[24]  P. Voyles,et al.  A quantitative measure of medium-range order in amorphous materials from transmission electron micrographs , 2003 .

[25]  Yanchao Wang,et al.  Crystal structure prediction via particle-swarm optimization , 2010 .

[26]  Laura Filion,et al.  Prediction of binary hard-sphere crystal structures. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Mario Valle,et al.  Evolutionary Crystal Structure Prediction as a Method for the Discovery of Minerals and Materials , 2010 .

[28]  J. C. Schön,et al.  First Step Towards Planning of Syntheses in Solid‐State Chemistry: Determination of Promising Structure Candidates by Global Optimization , 1996 .

[29]  D. Sánchez-Portal,et al.  Lowest Energy Structures of Gold Nanoclusters , 1998 .

[30]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[31]  J. Maddox Crystals from first principles , 1988, Nature.

[32]  Yong L. Xiao,et al.  Genetic algorithm: a new approach to the prediction of the structure of molecular clusters , 1993 .

[33]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[34]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[35]  Mario A. Storti,et al.  MPI for Python , 2005, J. Parallel Distributed Comput..

[36]  P. Voyles,et al.  Analytical and computational modeling of fluctuation electron microscopy from a nanocrystal/amorphous composite. , 2012, Ultramicroscopy.

[37]  E. Kirkland Computation in electron microscopy. , 2016, Acta crystallographica. Section A, Foundations and advances.

[38]  Mario A. Storti,et al.  MPI for Python: Performance improvements and MPI-2 extensions , 2008, J. Parallel Distributed Comput..

[39]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[41]  Lothar Thiele,et al.  A Comparison of Selection Schemes Used in Evolutionary Algorithms , 1996, Evolutionary Computation.

[42]  Irene Yarovsky,et al.  HRMC: Hybrid Reverse Monte Carlo method with silicon and carbon potentials , 2008, Comput. Phys. Commun..

[43]  Matthew J. Kramer,et al.  Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu , 2008 .

[44]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[45]  R. Johnson,et al.  Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers , 2004 .

[46]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[47]  B. Hartke Global geometry optimization of clusters using genetic algorithms , 1993 .

[48]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[49]  P. Voyles,et al.  Effect of sample thickness, energy filtering, and probe coherence on fluctuation electron microscopy experiments. , 2011, Ultramicroscopy.

[50]  M. Finnis,et al.  A genetic algorithm for predicting the structures of interfaces in multicomponent systems. , 2010, Nature materials.

[51]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[52]  Marcus Hutter,et al.  Fitness uniform selection to preserve genetic diversity , 2001, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[53]  Matt Probert,et al.  A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction , 2006, cond-mat/0605066.

[54]  Earl J. Kirkland,et al.  Advanced Computing in Electron Microscopy , 1998 .

[55]  Hassan Masum,et al.  Review of How to Solve It: Modern Heuristics: Zbigniew Michalewicz and David B Fogel , 2001, SIGA.

[56]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[57]  Qiang Zhu,et al.  New developments in evolutionary structure prediction algorithm USPEX , 2013, Comput. Phys. Commun..

[58]  Xiaohao Yang,et al.  Complex modeling: a strategy and software program for combining multiple information sources to solve ill posed structure and nanostructure inverse problems. , 2015, Acta crystallographica. Section A, Foundations and advances.

[59]  Matthew J Cliffe,et al.  Structure determination of disordered materials from diffraction data. , 2009, Physical review letters.

[60]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[61]  George Bosilca,et al.  Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation , 2004, PVM/MPI.

[62]  Structure of silver clusters with magic numbers of atoms by data of molecular dynamics , 2008 .

[63]  K. Harris,et al.  The application of a genetic algorithm for solving crystal structures from powder diffraction data , 1997 .

[64]  Alex Zunger,et al.  Global space-group optimization problem : Finding the stablest crystal structure without constraints , 2007 .

[65]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[66]  R. Mcgreevy,et al.  Structural modelling of glasses using reverse Monte Carlo simulation , 1990, Nature.

[67]  Z. H. Melgarejo,et al.  Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. , 2012, Physical review letters.